

A 20-year reforecast study combining high-resolution hydrological modelling, ensemble forecasting and data assimilation for the 12 largest tributaries of the Rhine

Deltares

PhD thesis

Public defense LIVE STREAM:

12 May 2020, 16:00

https://weblectures.wur.nl

Interpolate, Simulate, Assimilate operational aspects of improving hydrological forecasts in the Rhine basin

0

Rhine basin

- ~160.000 km2
- Operational forecasting system for water levels and discharge at the Dutch border
- 12 subbasins (Moselle, Main, etc.) from which the discharge is fed into a hydrodynamic model of the Rhine
- The most upstream part (Rhine above Maxau) is characterized by the Alps and natural lakes
- Stations from which data is assimilated are in red dots.
- Assimilation / error correction is done for each subbasin separately

Why this study?

- Ongoing movement towards spatially distributed models on (very) high spatial and temporal resolutions
- Ongoing movement to implement ensemble forecasts
- Ongoing development to combine ensemble forecasts with state-updating data assimilation
- But only few studies that combine all three...
- And even less so over long time periods

Data

- Hourly 1.2x1.2 km forcing data set (1998-2016)
- ECMWF hindcast data set for 20 years of forecasts every 3-4 days.

 52^{-} 51^{-} 50^{-} 49^{-} 48^{-} 47^{-} 6 8 10 10 5 0 -5-10

Avg. daily mean temperatu

(†)

(CC)

Avg. yearly PET sum

van Osnabrugge, B. (Bart) (2017) Gridded precipitation dataset for the Rhine basin made with the genRE interpolation method. Deltares.

Dataset. https://doi.org/10.4121/uuid:c875b385-ef6d-45a5-a6d3-d5fe5e3f525d

van Osnabrugge, B. (Bart) (2018) Gridded Hourly Temperature, Radiation and Makkink Potential Evaporation forcing for hydrological modelling in the Rhine basin. Wageningen University & Research. Dataset. <u>https://doi.org/10.4121/uuid:e036030f-</u> c73b-4e7b-9bd4-eebc899b5a13

Model: wflow_hbv

- Based on the well known HBV concept
- Discretisized for each grid cell
- Flows are routed with kinematic wave
- Hourly time step
- 1.2x1.2 km
- Upper zone and Lower zone states are updated as well as the water level

Interpolate, Simulate, Assimilate

Methods and materials Data assimilation and Auto Regression

Asynchronous EnKF

• AEnKF in OpenDA (Ridler et al., 2014, see also Rakovec et al. 2015)

nterpolate, Simulate, Assimilate perational aspects of improving ydrological forecasts in the Rhine basin

https://www.globalacademicpress.com/index.php?route=product/

product&product id=479&search=osnabrugge

AR

- ARMASA algorithm in Delft-FEWS (Broersen and Weerts, 2005)
- $X_t = c + e_t + \sum_{i=1}^p \varphi_i X_{t-i} + \sum_{i=1}^q \theta_i e_{t-i}$

c: constant

e: white noise error

- φ : auto regressive parameters
- θ : moving average parameters

Here: only AR part is used with maximum order 3

Historic state estimation

- KGE of modelled discharge as proxy for correct state
- KGE improves greatly for each basin with AEnKF state updating
- Especially when initial model results were very poor
- Calculated over a 20 year simulation period on a daily time step

Interpolate, Simulate, Assimilate

operational aspects of improving hydrological forecasts in the Rhine basin

Shown as hydrograph

- Effect of updating is shown in the hydrograph
- Correction is applied for whole biased periods

Year with lowest KGE for station Opladen in Wupper basin

Interpolate, Simulate, Assimilate operational aspects of improving hydrological forecasts in the Rhine basin

https://www.globalacademicpress.com/index.php?route=product/ product&product_id=479&search=osnabrugge

Results in forecast mode

Forecast verification scores. MCRPS (left) and MCRP **Skill Score** against climatology (middle) or the open loop simulation (right)

Solid line: open loop simulation

Dotted line: AEnKF

Stripe-dot: AR correction

Forecast verification score for station Dietersheim in Nahe basin

Comparison AR and AEnKF

- Below zero line: EnKF has better results than AR
- Colors indicate the quality of the original (open loop) simulation (colorbar on the right)
- AR outperforms EnKF for the first ~2 days, EnKF outperforms for longer forecasts
- Exceptions are poorly modelled basins

Conclusions

- Large scale data assimilation experiment combining current trends in hydrological forecasting: high resolution spatial and temporal model, with ensembles and state-updating but for a long continuous time period
- AR correction strong for 2 day period
- AEnKF improves longer forecasts
- AR can give 'odd' results, while AEnKF results are always consistent with the model

Interpolate, Simulate, Assimilate operational aspects of improving hydrological forecasts in the Rhine basin

https://www.globalacademicpress.com/index.php?route=product/ product&product_id=479&search=osnabrugge

Ð

Acknowledgement

IMPREX is a research project supported by the European Commission under the Horizon 2020 Framework Programme

Grant Agreement No 64181

Duration: 01/10/15 - 01/10/19

Contact details

Deltares Bart van Osnabrugge Bart.vanOsnabrugge@Deltares.nl Albrecht Weerts Albrecht.Weerts@deltares.nl

www.imprex.eu

