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Context

• Background

• Research objective

Approach

• Investigated scenarios

• Process Network

Results I

• Velocity distribution patterns 
due to spatial 
heterogeneity

• Impact on travel time of 
conservative tracers in the 
domain

• Select single scenario 
examples of biomass and 
dissolved species 
concentrations in the 
domain: 2-D and 1-D profile

• Impact on groundwater 
sampling and analysis

• Aggregated impact on mass 
removal and biomass in the 
domain with heterogeneity

Results II

• Investigated scenario for 
temporal heterogeneity
and single scenario example

• Aggregated results on the 
sensitivity of mass removal 
and biomass

Summary

• Summary of spatio-temporal 
heterogeneity effects on 
mass removal and biomass
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(Küsel et al., 2016)

Context

Background

Resolve biogeochemical 
dynamics at the small 

scale focusing on spatio-
temporal heterogeneities

Spatially heterogenous 
and limited observational 

opportunities

Complex non-linear 
system and temporally 

dynamic

Study links between 
surface and subsurface

AquaDiva

Critical Zone

Subsurface

Numerical 
modeling of 

biogeochemical 
dynamics

Surface

Research 

objective
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Resolve biogeochemical dynamics in the earth‘s 

critical zone using a numerical modeling approach

Identification of environmental factors governing 

biogeochemical processes at the small scale with 

respect to physicochemical changes and biological 

activity with a focus on spatial heterogeneity and 

time variable flow rates

Domain:

▪ 0.5m x 0.3m

▪ Mass influx – top boundary

▪ Mass outflux – bottom boundary Example of a heterogeneous domain with a preferential flow path

Context

Research objective

Groundwater 

flow 

direction



OGS#BRNS

Spatial Heterogeneity: 49

• Variance in permeability: 4

• Anisotropy: 3

• Instanced 4 times

Temporal Heterogeneity: 3

• Variance in time series: 3

• Variance: 1, 2, 5

Flow regimes: 3

• Average water velocity: 3

• Slow, medium and fast flow
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Approach

Investigated scenarios

C,N

Spatio-temporal 
heterogeneity 

affects 
biogeochemical 

cycling

Saturated 
zone

Process 
network

Redox 
regimes: 2

Microbial 
life cycle: 

66 
processes



Process network
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Results I: Spatial heterogeneity

Impact on velocity distribution patterns: Same across all flow regimes
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Velocity distribution (m/d) in heterogeneous scenarios (Variance:Anisotropy) in medium 

flow regime

▪ Heterogeneity results in corresponding velocity 

distribution patterns in the domain, but

➢ Average water flux is the same for a given 

flow regime

▪ Absolute values of velocity depends on the flow 

regime, but

➢ Distribution pattern is same across all flow 

regimes



Results I: Spatial heterogeneity

Velocity distribution: Impact on breakthrough time: Varies with flow regime
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▪ Shorter breakthrough times in heterogeneous 

domains

▪ Indicates relative importance of flow processes 

(diffusion v/s dispersion v/s advection)

➢ Peclet # is important to describe impact of 

spatial heterogeneity on velocity distributions

➢ Impact on breakthrough time shall be used to 

indicate heterogeneity
Increasing heterogeneity

𝑃𝑒 =
𝑎𝑑𝑣𝑒𝑐𝑡𝑖𝑜𝑛

𝑑𝑖𝑓𝑓𝑢𝑠𝑖𝑜𝑛 + 𝑑𝑖𝑠𝑝𝑒𝑟𝑠𝑖𝑜𝑛



Results I: Spatial heterogeneity

Single scenario examples: Biomass: 2D
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▪ Microbial biomass distribution is not uniform.

▪ Linked with the heterogeneity structure and associated velocity distribution.

Concentrations 

in µM and 

velocity in m/d.



Results I: Spatial heterogeneity

Single scenario examples: Dissolved chemical species: 2D
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Concentrations in µM 

and velocity in m/d.▪ Dissolved species concentration is also distributed and linked with heterogeneity and 

associated velocity distribution.

▪ Groundwater sampling aggregates the solutes resulting in loss of information.

Well 

screen

C,N

C,N



Results I: Spatial heterogeneity

Mobile and immobile biomass, dissolved species concentration: 1D
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Flux averaged concentrations of dissolved species along the dominant 

flow direction in heterogeneous domains displayed against the base 

homogeneous case (dashed lines)

Single scenario: dissolved species

➢ The removal of carbon and nitrogen is lower 

in heterogeneous scenarios compared to the 

homogeneous base case.

Since scenario: biomass distribution

Flux and spatially averaged concentrations of active mobile and 

immobile microbial species along the dominant flow direction in 

heterogeneous domains displayed against the base homogeneous 

case (dashed lines)

➢ Apparent “co-occurrence” of microbial species in 

heterogeneous domains.

Mobile Immobile

Shifting 

oxic-

anoxic 

interface

Reduced 

C and N 

removal

C,N



Results I: Spatial heterogeneity

Implications for sampling and analysis: Summary
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Caution for sampling and analysis

▪ Groundwater sampling techniques:

▪ Collect flux averaged/volume averaged mobile 

matter in the subsurface

➢Does not reflect the heterogeneity in 

mobile matter distribution

▪ Capture a fraction of the microbial population 

present in the subsurface

➢Does not reflect the dominant species 

that cycle the nutrients in the subsurface

▪ Core sampling must be part of the drilling 

program for monitoring wells

Nutrient cycling

▪ Nutrient distribution governed by the 

heterogeneity structure: longer persistence in 

high flow zones.

Biomass distribution

▪ Biomass distribution governed by nutrient and 

electron acceptor availability:

▪ Aerobes are dominant in DO rich zones

▪ Anaerobes are active at the interface of high 

flow and low flow zones



➢ Impact depends on:

➢ Flow regime (Pe#)

➢ Relative time scale of reaction and transport 

(Da#) in the domain

➢ Linear relationship between impact and reduction 

in breakthrough time

Results I: Spatial Heterogeneity

Aggregated results: Nutrient cycling: Summary
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Aggregated impact on carbon and nitrogen removal against 

decreasing breakthrough time resulting from spatial 

heterogeneity

𝐼𝑚𝑝𝑎𝑐𝑡 𝑜𝑛 𝑛𝑢𝑡𝑟𝑖𝑒𝑛𝑡 𝑐𝑦𝑐𝑙𝑖𝑛𝑔

=
𝑆𝑝𝑒𝑐𝑖𝑒𝑠 𝑟𝑒𝑚𝑜𝑣𝑎𝑙 𝑖𝑛 ℎ𝑒𝑡𝑒𝑟𝑜𝑔𝑒𝑛𝑒𝑜𝑢𝑠 𝑠𝑐𝑒𝑛𝑎𝑟𝑖𝑜

𝑆𝑝𝑒𝑐𝑖𝑒𝑠 𝑟𝑒𝑚𝑜𝑣𝑎𝑙 𝑖𝑛 ℎ𝑜𝑚𝑜𝑔𝑒𝑛𝑒𝑜𝑢𝑠 𝑠𝑐𝑒𝑛𝑎𝑟𝑖𝑜

𝐷𝑎 =
𝑟𝑒𝑎𝑐𝑡𝑖𝑜𝑛 𝑡𝑖𝑚𝑒 𝑠𝑐𝑎𝑙𝑒

𝑡𝑟𝑎𝑛𝑠𝑝𝑜𝑟𝑡 𝑡𝑖𝑚𝑒 𝑠𝑐𝑎𝑙𝑒

C,N

Increasing heterogeneity



Results I: Spatial Heterogeneity

Aggregated results: Active biomass: Summary
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Aggregated impact on biomass (%) of each species against decreasing breakthrough time 

resulting from spatial heterogeneity

𝐼𝑚𝑝𝑎𝑐𝑡 𝑜𝑛 𝑏𝑖𝑜𝑚𝑎𝑠𝑠

=
𝐵𝑖𝑜𝑚𝑎𝑠𝑠 𝑖𝑛 ℎ𝑒𝑡𝑒𝑟𝑜𝑔𝑒𝑛𝑒𝑜𝑢𝑠 𝑠𝑐𝑒𝑛𝑎𝑟𝑖𝑜

𝐵𝑖𝑜𝑚𝑎𝑠𝑠 𝑖𝑛 ℎ𝑜𝑚𝑜𝑔𝑒𝑛𝑒𝑜𝑢𝑠 𝑠𝑐𝑒𝑛𝑎𝑟𝑖𝑜

➢ Note that mobile fraction is 

sampled and measured in 

groundwater sampling

➢ Impact on mobile biomass is not 

commensurate with the impact 

on nutrient cycling

Increasing heterogeneity
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Results II: Temporal heterogeneity and spatial heterogeneity

Time series: Scenario setup

▪ Generated time series for average 

groundwater flux through the domain for a 

period of 15 years

▪ Common observation that is recorded in 

groundwater monitoring wells at 

reasonably high frequency

▪ Attributable to diurnal fluctuations in 

temperature, seasonality or super-annual 

cycles in weather

Example time series data for:

(a) groundwater velocity in the domain

(b) (i) – (iv) flux averaged concentration of chemical species in the domain

(c) (i) – (iii) biomass in the domain

(a)

(b) (i)

(c) (i)

(b) (ii)

(c) (ii)

(b) (iii)

(c) (iii)

b (iv)



Results II: Temporal heterogeneity and spatial heterogeneity

Aggregated results: Active biomass: Sensitivity
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▪ Slow and medium flow regimes: Low 

sensitivity

▪ Fast flow regime: Increased presence of 

nitrate reducers with temporal heterogeneity, 

influenced by spatial heterogeneity

Maximum variation induced in biomass from steady state conditions

➢The Da# associated with the growth 

dynamics of the microbial species is a 

governing factor to evaluate impact of 

temporal dynamics

𝑆𝑒𝑛𝑠𝑡𝑖𝑣𝑖𝑡𝑦 =
𝑉𝑎𝑟𝑖𝑎𝑡𝑖𝑜𝑛 𝑖𝑛 𝑏𝑖𝑜𝑚𝑎𝑠𝑠 𝑜𝑓 𝑑𝑜𝑚𝑎𝑖𝑛 𝑓𝑟𝑜𝑚 𝑠𝑡𝑒𝑎𝑑𝑦 𝑠𝑡𝑎𝑡𝑒 𝑐𝑜𝑛𝑑𝑖𝑡𝑖𝑜𝑛𝑠

𝑉𝑎𝑙𝑢𝑒 𝑖𝑛 𝑠𝑡𝑒𝑎𝑑𝑦 𝑠𝑡𝑎𝑡𝑒 𝑐𝑜𝑛𝑑𝑖𝑡𝑖𝑜𝑛𝑠

Increasing heterogeneity



Results II: Temporal heterogeneity and spatial heterogeneity

Aggregated results: Nutrient cycling: Sensitivity
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Maximum variation induced in flux averaged concentrations from 

steady state conditions at the outlet of the domain

▪ Slow flow regime: low sensitivity

▪ Medium flow regime: changing capability to 

remove nitrogen with spatio-temporal 

heterogeneities

▪ Fast flow regime: increased capability to 

remove nitrogen with temporal 

heterogeneity

➢ Spatio-temporal heterogeneity impacts 

sensitivity depending on the chemical 

species (Da#) and the flow regime (Pe#)

𝑆𝑒𝑛𝑠𝑡𝑖𝑣𝑖𝑡𝑦 =
𝑉𝑎𝑟𝑖𝑎𝑡𝑖𝑜𝑛 𝑖𝑛 𝑓𝑙𝑢𝑥 𝑎𝑣𝑒𝑟𝑎𝑔𝑒𝑑 𝑐𝑜𝑛𝑐𝑒𝑛𝑡𝑟𝑎𝑡𝑖𝑜𝑛 𝑎𝑡 𝑜𝑢𝑡𝑙𝑒𝑡 𝑜𝑓 𝑑𝑜𝑚𝑎𝑖𝑛 𝑓𝑟𝑜𝑚 𝑠𝑡𝑒𝑎𝑑𝑦 𝑠𝑡𝑎𝑡𝑒 𝑐𝑜𝑛𝑑𝑖𝑡𝑖𝑜𝑛𝑠

𝑉𝑎𝑙𝑢𝑒 𝑖𝑛 𝑠𝑡𝑒𝑎𝑑𝑦 𝑠𝑡𝑎𝑡𝑒 𝑐𝑜𝑛𝑑𝑖𝑡𝑖𝑜𝑛𝑠

C,N

Increasing heterogeneity



Summary
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▪ Spatial heterogeneity impacts microbial biomass distribution and nutrient cycling in the subsurface and 

must be accounted for while conducting groundwater sampling and analysis.

▪ Impact of temporal heterogeneity depends on the relative time scale of disturbances with respect to 

reaction time scales.

Breakthrough 
time

Da#

Impact of 
heterogeneities 
on mass 
removal and 
biomass

H
ig

h
e
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Pe Impact of spatial 
heterogeneity on 
breakthrough time

Impact of 
heterogeneities 
on mass removal 
and biomass

H
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