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Guiding Questions

 How do we translate chamber measurements of SOA formation to 

atmospheric predictions?

 Are current mechanisms of isoprene oxidation capable of explaining 

volatility-driven (non-aqueous) SOA formation observed in chambers?

 What are the implications of such chemistry for the importance of 

volatility-driven SOA formation by isoprene?



Chamber studies produce large but 

variable and dynamic ipSOA yields

~ 10% 

yield

~ 3% yield

Are these experiments consistent with each other? Chamber radical 

concentrations? SOA Photolysis? SOA Volatility? Vapor Wall Loss?

Kroll et al 2006 Liu et al 2017 (PNNL-2014)



F0AM-WAM Model

Hybrid Master Chemical 

Mechanism (MCM) with 

custom additions

Dynamic gas-particle and 

gas-wall partitioning with 

structure-based saturation 

vapor concentrations (c*)

Explicit particle-phase 

photolysis and accretion 

chemistry

D’Ambro et al. ES&T 2017

Wolfe et al. GMD 2016



Chamber experiments 

(33 total)

Time-dependent closed 

system (“Batch”)

Continuous-flow steady-state 

(CFSS) open system

Caltech (Kroll–2006) and 

Pacific Northwest National 

Laboratory (PNNL) ~ 10 m3

Teflon chambers

All use H2O2 as OH source and 

with and without added NOx

Chamber 
  

Type 
  

Run 
  

Isoprene 
(ppbv) 

H2O2 
(ppmv) 

NO  
(ppbv)  

Seed  
(um3 cm-3) 

Temperature 
(oC) 

Kroll-2006 Batch* 1 90 3.5 0 N/A 25.4 

Kroll-2006 Batch 2 46.1 3.5 0 N/A 25.6 

Kroll-2006 Batch 3 23 3.5 0 N/A 26 

Kroll-2006 Batch 4 12.2 3.5 0 N/A 25.7 

Kroll-2006 Batch 5 63.6 3.5 0 N/A 26.7 

Kroll-2006 Batch 6 29.4 3.5 0 N/A 28.7 

Kroll-2006 Batch 7 47.8 3.5 0 N/A 26.6 

Kroll-2006 Batch 8 41.6 3.5 0 N/A 26.4 

Kroll-2006 Batch 9 46.7 3.5 242 4.6 28.3 

Kroll-2006 Batch 10 43.5 3.5 496 7.1 28.3 

Kroll-2006 Batch 11 42.7 3.5 98 6.4 28.1 

Kroll-2006 Batch 12 49.1 3.5 51 6.5 28.2 

Kroll-2006 Batch 13 42.7 3.5 337 4.8 28.3 

Kroll-2006 Batch 14 42 3.5 708 4.7 27.5 

PNNL-2014 CFSS** 1 26 15 0 0.3 25.4 

PNNL-2014 CFSS 2 26 10 0 0.3 25.4 

PNNL-2014 CFSS 3 26 10 2 0.3 25.4 

PNNL-2014 CFSS 4 26 10 5 0.3 25.4 

PNNL-2014 CFSS 5 26 10 10 0.3 25.4 

PNNL-2014 CFSS 6 26 10 20 0.3 25.4 

PNNL-2014 CFSS 7 26 10 50 0.3 25.4 

N/A CFSS 8 26 10 100 0.3 25.4 

PNNL-2015 CFSS 9 20 10 0 0.3 25.4 

PNNL-2015 CFSS 10 20 2 0 0.3 25.4 

PNNL-2015 CFSS 11 20 5 0 0.3 25.4 

PNNL-2015 CFSS 12 20 0.5 0 0.3 25.4 

PNNL-2018 Batch 1 43.5 7.5 0 0.3 24.0 

PNNL-2018 Batch 2 65 7.5 0 0.3 24.0 

PNNL-2018 Batch 3 69 7.5 0 0.3 24.0 

PNNL-2018 Batch 4 56.5 7.5 0 0.3 24.0 

PNNL-2018 Batch 5 51 7.5 0 0.3 24.0 

PNNL-2018 Batch 6 57 7.5 0 0.3 24.0 

PNNL-2018 Batch 7 48 7.5 0 0.3 24.0 
 



Comparison to Kroll-

2006 without-NOx 

Experiments



Comparison to 

PNNL-2018 without-

NOx Experiments



Overall agreement w/in 25% for 

experiments without NOx added

 Agreement similar for time-dependent and 
steady-stage experiments on different 
chambers by different groups 10 years apart

 Agreement requires: 

 significant yield of second-generation ISOPOOH-
derived peroxy radical (~20%): “DHHPO2”

 1,5 H-shift of DHHPO2 to yield hydroxy epoxide 
(0.4 s-1)

 particle-phase photolysis of –OOH containing 
components (~0.02*jNO2)



Extrapolating to 

the atmosphere

Model and experimental 

uncertainties



Extrapolating to 

the atmosphere

Chemical parameters

❑ YDHHPO2 needs to explain 

observed DHDHP content

❑ 1,5 H-shift needed to 

explain H2O2 dependence

❑ 1,5 H-shift rate constant 

from theory ~ 0.8 s-1 with 

~factor of 5 uncertainty

❑ D’Ambro ES&T 2017; Møller

et al JPC 2019



Extrapolating to 

the atmosphere

Chemical parameters

Particle-phase -OOH 

photolysis required



Extrapolating to 

the atmosphere

Role of NOx: 

SOA response to NO partly 

captured by model for 

continuous-flow experiments

Some issues likely related to 

NOx-HOx interactions and 

recycling

PNNL-2014



Extrapolating to 

the atmosphere

Role of NOx

SOA response not at all 

captured by model for time-

dependent experiments



Extrapolating to 

the atmosphere

Role of NOx

SOA response not at all 
captured by model for time-
dependent experiments

Potentially explained by 
second-generation organic 
nitrate accretion reactions, 
but NOT hydrolysis



Extrapolating to 

the atmosphere

RO2 Fate:

Fate of key RO2 (DHHPO2) in 
chambers is >10x skewed towards 
reaction with HO2

Even with substantial NOx added

Role of unimolecular 1,5 H-shift far 
more important in the atmosphere

→ Implies significant T dependence

Without NOx

With NOx

(0.5 – 1 ppb NO)



500 ppt NO

1km

6km

VBS Isoprene SOADHHPO2 Pathway SOA

ug/m3 ug/m3

Use mechanism to bound importance 

of volatility-driven Isoprene SOA

Box-Model for “Typical” 

Boundary Layer Conditions

WRF-Chem over Amazon near Manaus



Conclusions

 Near explicit mechanisms of isoprene low-NOx oxidation can reproduce 
chamber generated SOA abundance and time evolution without 
assuming volatility distributions. Not so for experiments with NOx

 RO2 from ISOPOOH and its unimolecular 1,5 H-Shift play key role in 
setting volatility-driven SOA from isoprene with and without NOx

 RO2 fate in chambers highly perturbed from atmospheric conditions, 
demanding use of a mechanistic model with RO2 H=Shift chemistry to 
extrapolate chamber yields to the atmosphere

 Relatively simple, mechanistic models of low-NOx isoprene volatility-
driven SOA are possible that will better capture the sensitivity to NOx and 
temperature than common VBS approaches
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Vapor-wall loss 

effects

Including vapor-wall loss 
leads to lower SOA predicted.

Uncertainty in 1 parameter, 
1,5 H-Shift of key RO2,, is able 
to easily compensate for 
effect of vapor wall loss.



Mass accommodation



Predicted SOA Composition (Kroll-2006)

Without NOx With NOx Added



Kroll-2006 O3, NO, NO2

Kroll et al ES&T 2006


