



# Extraction of the daily quiet variation from the geomagnetic field observations with the principal component analysis

### Anna Morozova, Rania Rebbah

<sup>1</sup> Centre for Earth and Space Research of University of Coimbra, Department of Physics, University of Coimbra, 3000-456 Coimbra, Portugal <sup>2</sup> Department of Physics, University of Coimbra, 3000-456 Coimbra, Portugal

EMRP2.3 /ST4

D1158: Morozova et al.

EGU2020



## Abstract

- •Geomagnetic field (GMF) variations from external sources are classified as regular (diurnal) or occurring during periods of disturbances.
- •The most significant regular variations are the quiet solar daily variation (Sq) and the disturbance daily variation (S<sub>D</sub>).
- •These variations have well recognized daily cycles and need to be accounted for before the analysis of the disturbed field.
- Preliminary analysis of the GMF variations shows that the principal component analysis (PCA) is a useful tool for extraction of regular variations of GMF; however the requirements to the data set length, geomagnetic activity level etc. need to be established.
- •Here we present preliminary results of the PCA-based Sq and S<sub>D</sub> extraction procedure based on the analysis of the Coimbra Geomagnetic Observatory (COI) measurements of the geomagnetic field components H, X, Y and Z between 2007 and 2017.



### Data

- H, X, Y and Z components of the geomagnetic field
- Measured at the Coimbra Geomagnetic Observatory (COI), Portugal
  - 40° 13′ N, 8° 25′ W, 99 m asl
- Hourly series
- Only December months from 2007 to 2017

The month-long hourly series of each component was analyzed

- for individual month of each of 11 years
- for all 11 years together

• Due to the location of the COI observatory  $H \approx X$  (since  $D \approx -4^{\circ}$ )

 COI is located near or slightly north to the mean Sq vortex focus position for European sector (≤ 40° N) (e.g., Yamazaki and Maute, 2017)

EGU2020

D1158: Morozova et al.

**EMRP2.3 /ST4** 



## Methods for Sq & S<sub>D</sub> extraction

- 1.Standard approach using quietest days of a month
- 2. Principal component analysis (PCA)

### Correlation analysis

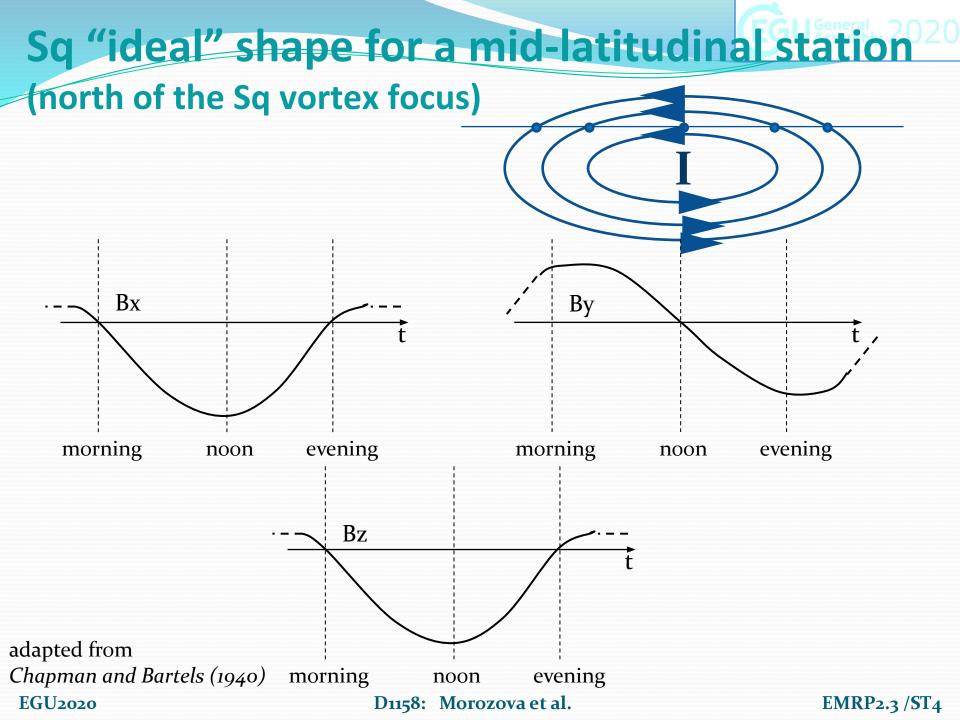
- Similarities between series were analyzed using the correlation coefficients (r) and their statistical significances (p value)
- Statistical significance (p value) was estimated using the Monte Carlo approach with artificial series constructed by the "phase randomization procedure" (*Ebisuzaki*, 1997).



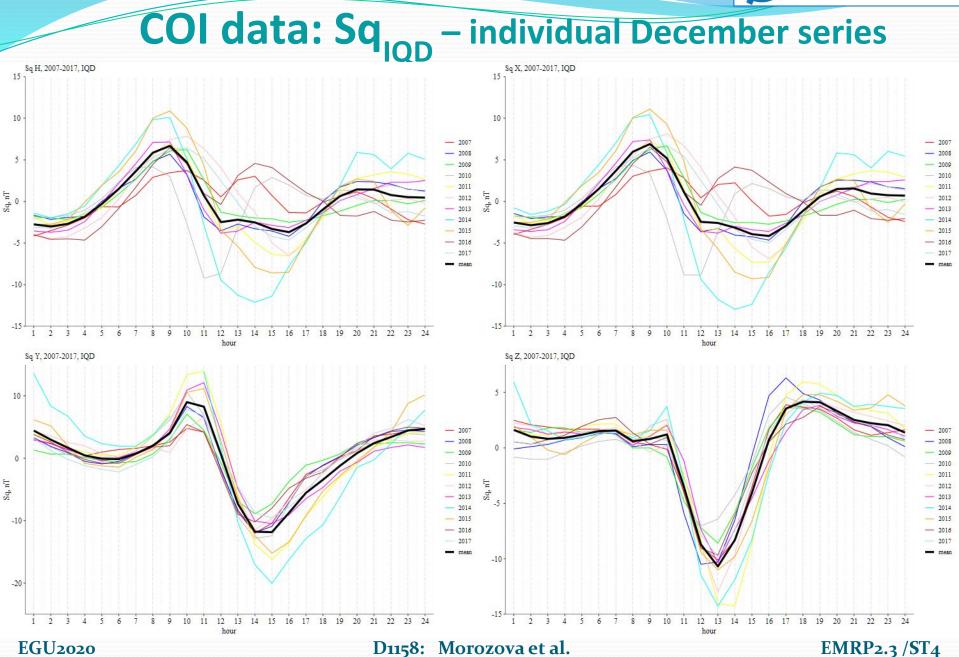
## Method 1:

## Sq & S<sub>D</sub> – standard approach

- "daily quiet" (Sq):
  - calculated as the mean daily variation of the 5 most quiet days of a month
    - international quiet days IQD, estimated by the GFZ-Potsdam from Kp
    - local quiet days LQD, estimated from the local K-index
  - ionospheric origin
    - Source: electric current vortex in the sunlit hemisphere
  - contamination from magnetospheric currents (mostly in polar regions)
- "daily disturbed" (S<sub>D</sub>):
  - calculated as the mean daily variation of all days of the month (S) minus Sq
  - the name comes from the similarity of shapes of the S<sub>D</sub> and Dst variations
  - magnetospheric origin


EMRP2.3 /ST4




### Method 1:

## **Problems of the standard approach**

- IQD are days that are only relatively quiet comparing to others days of a month
- They can be disturbed on the **absolute** scale
- Final IQD definition is lagged by 1-2 yr
- Observations for certain IQD day at a particular observatory can be missing
- There is a single curve for all days of a month without accounting for variability
  - in the ionosphere and magnetosphere,
  - for the position of the Sq-generating vortex
  - for the shape of the Sq-generating vortex
- A number of studies (Xu and Kamide, 2004; Chen et al., 2007; Yamazaki et al., 2016) showed the need for methods of Sq (and S<sub>D</sub>) extraction which take into account day-to-day variability of the ionospheric conditions.



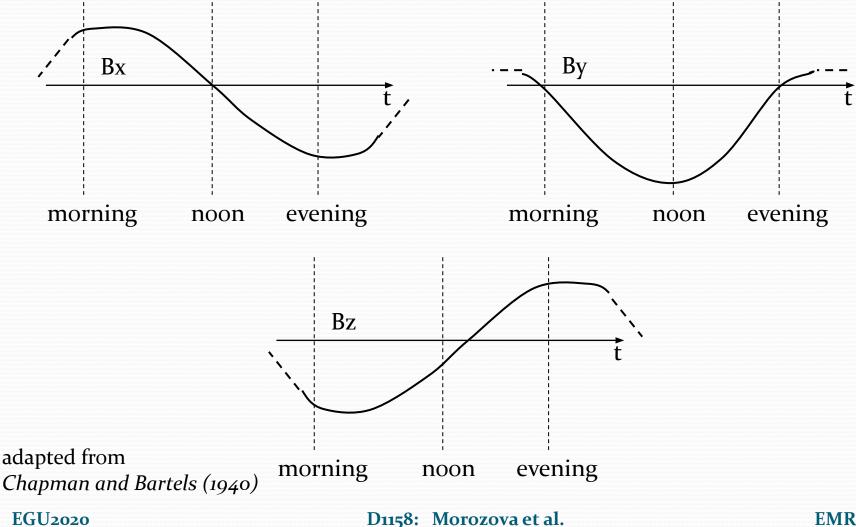






# **COI data: Sq**<sub>IQD</sub> – individual December series

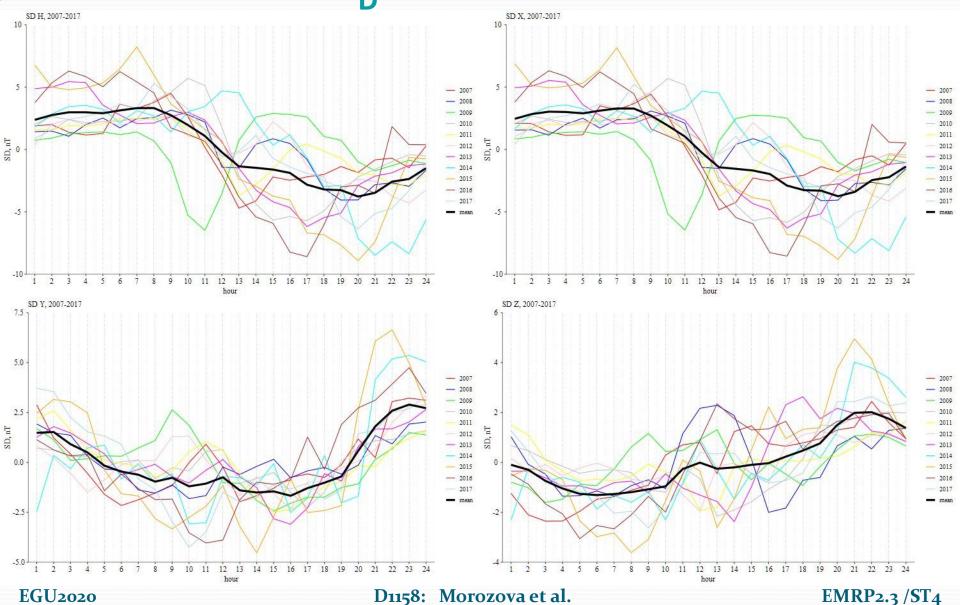
### • $H \approx X$ components


- Mean Sq is far from the "ideal Sq" for a station located north of the Sq vortex focus, i.e.
  - either there is contamination by disturbances
  - or for most of these IQD days COI was located near the Sq vortex centre
- High months-to-month variability of the Sq<sub>IOD</sub> shape:
  - the shapes of Sq<sub>IQD</sub> for December of 2010, 2011, 2014, 2015 are similar to the "ideal Sq"
  - the shapes of Sq<sub>IQD</sub> for December of 2008, 2012, 2013, 2017 are close to the "ideal Sq"
  - the shapes of Sq<sub>IQD</sub> for December of 2007, 2009, 2016 are strongly affected by disturbances/Sq vortex shape and position

#### • Y, Z components

- Both mean Sq and Sq for individual months are similar to the "ideal Sq"
- Low month-to-month variability of the Sq<sub>IOD</sub> shape




S<sub>D</sub> "ideal" shape for a mid-latitudinal station



**EMRP2.3 /ST4** 



## **COI data: S** – individual December series





## **COI data: S**<sub>D</sub> – individual December series

### • $H \approx X$ components

- Mean S<sub>D</sub> is similar to the "ideal S<sub>D</sub>"
- The shapes of  $S_D$  for individual months can deviate from the "ideal  $S_D$ ", sometimes significantly (e.g., December 2007)
- High month-to-month variability of the S<sub>D</sub> shape

#### • Y, Z components

- Mean S<sub>D</sub> are similar to the "ideal S<sub>D</sub>"
- The shapes of  $S_D$  for individual months can deviate from the "ideal  $S_D$ " shape
- Moderate month-to-month variability of the S<sub>D</sub> shape



## Method 2:

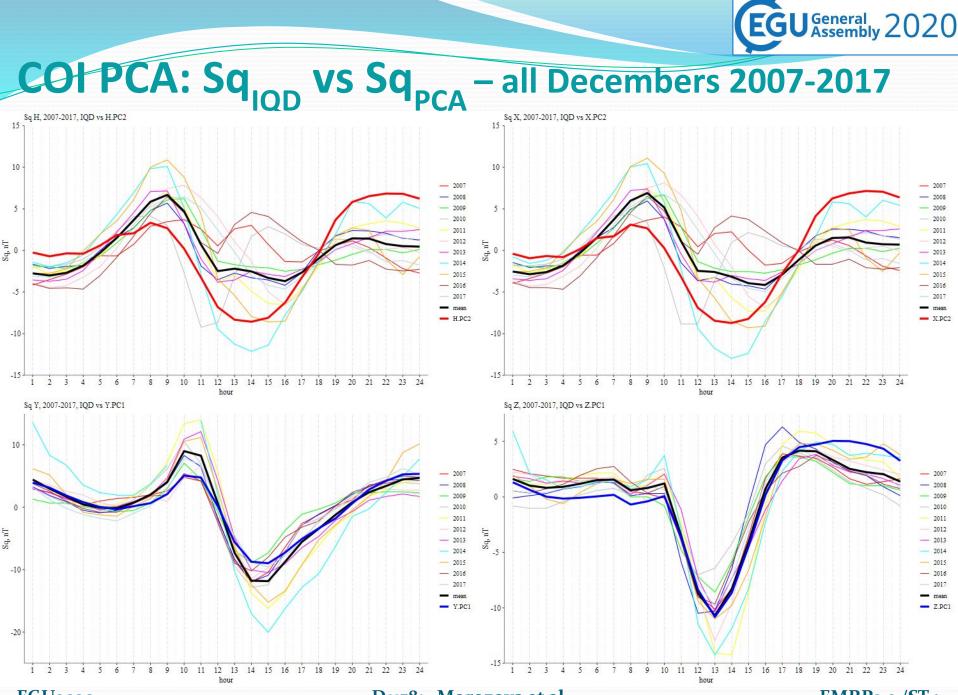
### **Principal components analysis (PCA)**

Previous studies show (Xu and Kamide, 2004; Chen et al., 2007) that the principal component analysis (PCA) is a useful tool for the extraction of regular variations of GMF.

 PCA is a widely used method to extract independent modes of variability when a number of series of the same parameter of, e.g., different stations or days is used.



### Principal components analysis (PCA)


- Input data  $\Rightarrow$  covariance matrix  $\Rightarrow$  eigenvalues & eigenvectors.
- Eigenvalues ⇒ explained variances of the extracted modes
- Eigenvectors ⇒ principal component (PC) & empirical orthogonal function (EOF).
- PCs = daily variations of different types
- EOFs = amplitudes of daily variations (PCs) for each of the analyzed days
- PC# & EOF#  $\Rightarrow$  mode#
- PCA input matrix for COI data:
  - each column contains 24 observations (every 1 h)
  - number of columns:
    - 31 for an individual December (PCA for an individual month)
    - 31\*11 for all 11 Decembers together (PCA for 2007-2017)



## PCA results: Sq all Decembers 2007-2017

#### Each of the following plots shows

- Sq<sub>IOD</sub> calculated for each of 11 Decembers colored thin lines
- Sq<sub>IOD</sub> calculated for December of all 11 year black thick line
- Sq<sub>PCA</sub>: PC1 (Y & Z) and PC2 (H & X) obtained for the whole data set (11 years) blue and red thick lines, respectively



EGU2020

D1158: Morozova et al.

**EMRP2.3 / ST4** 



## PCA results: explained variances all Decembers 2007-2017

| Components | PC1 | Identified as  | PC2 | Identified as    |
|------------|-----|----------------|-----|------------------|
| Н          | 54% | S <sub>D</sub> | 18% | Sq               |
| Х          | 54% | S <sub>D</sub> | 19% | Sq               |
| Y          | 67% | Sq             | 12% | S <sub>D</sub> ? |
| Z          | 71% | Sq             | 10% | S <sub>D</sub> ? |



## COI PCA: Sq<sub>PCA</sub> - all Decembers 2007-2017

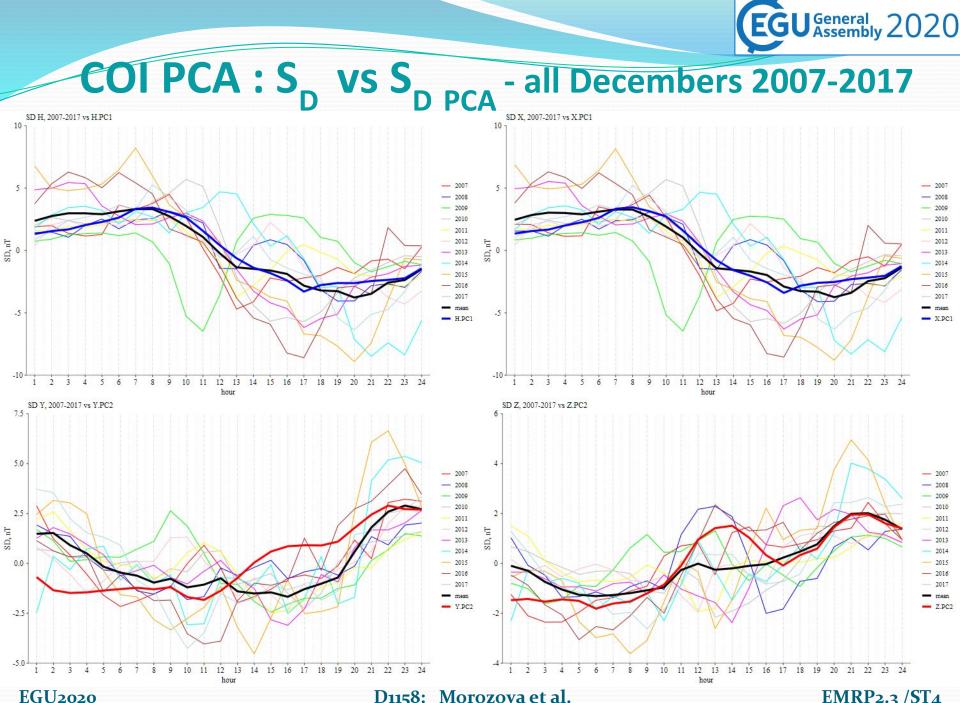
### ● H ≈ X components

- Sq<sub>PCA</sub> is identified as PC<sub>2</sub> and is similar to the "ideal Sq" without notable contamination by disturbances
- $Sq_{PCA} \neq Sq_{IQD}$

#### • Y, Z components

• Sq<sub>PCA</sub> is identified as PC1 and is similar to the "ideal Sq" without notable contamination by disturbances

•  $Sq_{PCA} = Sq_{IQD}$ 






## PCA results: S<sub>D</sub> all Decembers 2007-2017

#### Each of the following plots shows

- $S_{D IOD}$  calculated for each of 11 Decembers colored thin lines
- S<sub>D IOD</sub> calculated for December of all 11 year black thick line
- S<sub>D PCA</sub>: PC2 (Y & Z) and PC1 (H & X) obtained for the whole data set (11 years) red and blue thick lines, respectively



D1158: Morozova et al.

**EMRP2.3** /**ST**4



# COI PCA : S \_ all Decembers 2007-2017

### • $H \approx X$ components

S<sub>D PCA</sub> is identified as PC1 and is similar to the "ideal S<sub>D</sub>"
S<sub>D PCA</sub> ≈ S<sub>D</sub>

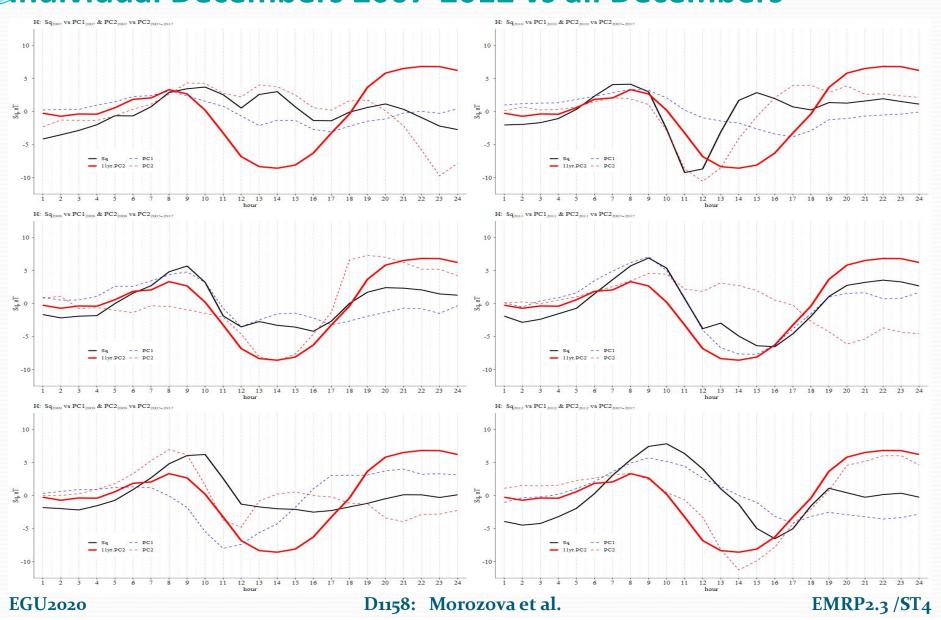
#### • Y, Z components

•  $S_{D PCA}$  is identified as PC2 and is similar to the "ideal  $S_{D}$ "

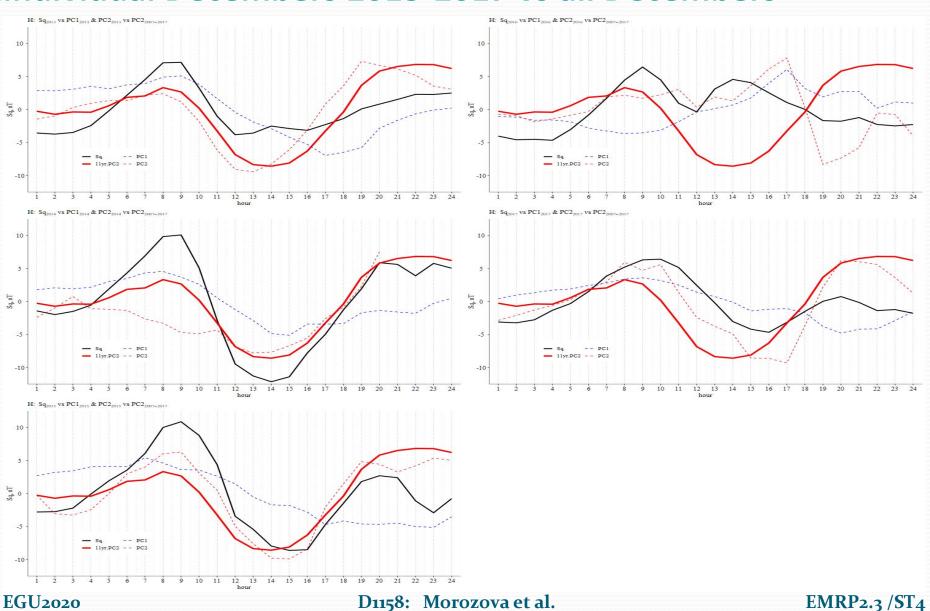
•  $S_{D PCA}$  is similar to  $S_{D}$ 






## individual Decembers 2007-2012 vs all Decembers (only H component)

- To test the effect of the data set length on the quality of the PCA-based method of the Sq extraction we applied PCA to the 1-month long data sets of 11 individual Decembers (H component only).
- Each of the following plots shows


**COI PCA: Sq** 

- Sq<sub>IOD</sub> calculated for December of this year black thick line
- PC2 obtained on the whole data set (11 years) red thick line
- PC1 and PC2 obtained for this particular month blue and red dashed lines

### COI PCA: Sq VS Sq IQD PCA individual Decembers 2007-2012 vs all Decembers



### COI PCA: Sq VS Sq IQD Individual Decembers 2013-2017 vs all Decembers



### PCA results: explained variances 2020

### individual Decembers from 2007 to 2017

| Time interval       | PC1             | Identified as    | PC2 | Identified as    |
|---------------------|-----------------|------------------|-----|------------------|
| December 2007       | 47%             | S <sub>D</sub> ? | 21% | ?                |
| December 2008       | 49 <sup>%</sup> | S <sub>D</sub>   | 17% | Sq               |
| December 2009       | 39%             | Sq??             | 28% | ?                |
| December 2010       | 56%             | S <sub>D</sub>   | 21% | Sq               |
| December 2011       | 54%             | Sq               | 17% | S <sub>D</sub> ? |
| December 2012       | 54%             | S <sub>D</sub>   | 22% | Sq               |
| December 2013       | 57%             | S <sub>D</sub>   | 23% | Sq               |
| December 2014       | 46%             | S <sub>D</sub>   | 25% | Sq??             |
| December 2015       | 78%             | S <sub>D</sub> ? | 11% | Sq               |
| December 2016       | 59%             | ?                | 12% | ?                |
| December 2017       | 55%             | S <sub>D</sub> ? | 18% | Sq               |
| Decembers 2007-2017 | 54%             | S <sub>D</sub>   | 18% | Sq               |

EGU2020

D1158: Morozova et al.

**EMRP2.3 /ST4** 



# COI PCA: Sq<sub>PCA</sub> & S<sub>D PCA</sub> - individual Decembers

 For 9 out of 11 analyzed individual months PCA extract daily variation that can be identified as Sq

- For 7 out of 11 analyzed months Sq<sub>PCA</sub> is identified as PC2
- For 2 out of 11 analyzed months Sq<sub>PCA</sub> is identified as PC1

 For 9 out of 11 analyzed individual months PCA extract daily variation that can be identified as S<sub>D</sub>

- For 8 out of 11 analyzed months S<sub>D PCA</sub> is identified as PC1
- For 1 out of 11 analyzed months S<sub>D PCA</sub> is identified as PC2



### Sq<sub>IQD</sub> vs Sq<sub>PCA</sub> individual Decembers 2013-2017 vs all Decembers

To compare IQD-based and PCA-based Sq curves for individual Decembers and for the whole data set we calculated correlation coefficients between:

- Sq<sub>IQD</sub> for individual December and PCs obtained for the whole data set (PC2<sub>11</sub>)
- $Sq_{IOD}$  for an individual December (PCi<sub>1</sub>: PCi<sub>1</sub> or PC2<sub>1</sub>)
- PC2<sub>11</sub> and PCi<sub>1</sub> which is identified as Sq

In the following Table the values in parentheses are p-values.
Only p-values < 0.15 are shown.</li>

### **Correlation coefficients**



## Sq<sub>IQD</sub> vs Sq<sub>PCA</sub>, individual Decembers vs all Decembers

| Time interval | Sq <sub>IQD</sub> vs PC2 <sub>11</sub> | Sq <sub>IQD</sub> vs PCi <sub>1</sub> | i            | $PC_{2_{11}}$ vs $PCi_{1}$ | i |
|---------------|----------------------------------------|---------------------------------------|--------------|----------------------------|---|
| December 2007 | 0.21                                   | 0.72 (0.08)                           | 2            | 0.60                       | 2 |
| December 2008 | 0.80 (0.04)                            | <b>0.65 (0.003)</b> / 0.56            | 1 / 2        | 0.87 (0.04)                | 2 |
| December 2009 | 0.37                                   | 0.52                                  | 2            | 0.67                       | 1 |
| December 2010 | 0.39                                   | 0.79 (0.002)                          | 2            | 0.64                       | 2 |
| December 2011 | 0.80 (0.07)                            | 0.90 (0.005)                          | 1            | 0.76 (0.14)                | 1 |
| December 2012 | 0.24                                   | 0.72 (0.05)                           | 1            | 0.94 (0.02)                | 2 |
| December 2013 | 0.67 (0.12)                            | 0.52                                  | 2            | 0.90 (0.05)                | 2 |
| December 2014 | 0.90 (0.03)                            | <b>0.69 (0.07)</b> / 0.54             | 1 / 2        | 0.83 (0.04)                | 2 |
| December 2015 | 0.57                                   | 0.47<br><b>0.79 (0.1</b> )            | 1 / <b>2</b> | 0.91 (0.002)               | 2 |
| December 2016 | 0.39                                   | 0.55                                  | 2            | 0.61 (0.04)                | 2 |
| December 2017 | 0.25                                   | 0.53 / <b>0.67</b>                    | 1 / <b>2</b> | 0.80 (0.07)                | 2 |

EGU2020



### Sq<sub>IQD</sub> vs Sq<sub>PCA</sub> individual Decembers 2013-2017 vs all Decembers

- Sq<sub>IQD</sub> is highly correlated with Sq<sub>PCA</sub> for those years when its shape is very similar to the "ideal Sq" shape:
  - 2008, 2011,2013, 2014, 2015 (compare to slide # 9)
  - Exceptions: 2010 & 2017 years when the time of the daily minimum is shifted to the earlier /later hours (respectfully) resulting in low correlation coefficients
- For 7 out of 11 analyzed months  $Sq_{IQD}$  is highly correlated with  $Sq_{PCA} = PC2_1$  for this particular month
- For 9 out of 11 analyzed individual months PC2<sub>11</sub> is highly correlated with PC2<sub>11</sub>



## Conclusions

- Preliminary results show that PCA can be successfully used for extraction of the Sq and S<sub>D</sub> variations from the observations of the geomagnetic field.
- •We analyzed H, X, Y and Z components for December months measured at the Coimbra Geomagnetic Observatory (COI) from 2007 to 2017.
- •The PCA-based Sq and S<sub>D</sub> curves were compared with the standard ones obtained using 5 IQD per month.
- PCA was applied to data sets of different length:
  - either 1 month-long data set for one of the analyzed yearsor data series for the same month but from all years combined together.



## Conclusions

- For most of the analyzed years
  - PC1 was identified as
    - •S<sub>D</sub> variation for H and X components and
    - Sq variations for Y and Z components.
  - •PC2 was identified as
    - •Sq variation for H and X components
    - •S<sub>D</sub> variations for Y and Z components.

•The PCA of the longer series (data for the same month but from different years combined together) produces more reliable results.



## References

- Ebisuzaki, W. (1997), A method to estimate the statistical significance of a correlation when the data are serially correlated, J. Clim., 10 (9), 2147-2153.
- Chapman, S. and Bartels, J. (1940) Geomagnetism. Oxford University Press, Oxford
- Chen, G.X., Xu, W.Y., Du, A.M., Wu, Y.Y., Chen, B. and Liu, X.C. (2007): Statistical characteristics of the day-to-day variability in the geomagnetic Sq field. Journal of Geophysical Research: Space Physics, 112, A6, doi:10.1029/2006JA012059.
- Xu, W.Y. and Kamide, Y. (2004): Decomposition of daily geomagnetic variations by using method of natural orthogonal component. Journal of Geophysical Research: Space Physics, 109, A5, doi:10.1029/2003JA010216.
- Yamazaki, Y., Häusler, K. and Wild, J.A. (2016): Day-to-day variability of midlatitude ionospheric currents due to magnetospheric and lower atmospheric forcing. Journal of Geophysical Research: Space Physics, 121, 7, 7067-7086.
- Yamazaki, Y., Maute, A. (2017): Sq and EEJ—A Review on the Daily Variation of the Geomagnetic Field Caused by Ionospheric Dynamo Currents. Space Sci Rev 206, 299–405, https://doi.org/10.1007/S11214-016-0282-z.

#### EGU2020





## Acknowledgement

- This study is funded by national funds through FCT (Foundation for Science and Technology, I.P.), under the project MAG-GIC: PTDC/CTA -GEO/31744/2017.
- CITEUC is funded by National Funds through FCT Foundation for Science and Technology (project: UID/MULTI/00611/2019) and FEDER – European Regional Development Fund through COMPETE 2020 – Operational Programme Competitiveness and Internationalization (project: POCI-01-0145-FEDER-006922).



FCT Fundação para a Ciência e a Tecnologia

MINISTÉRIO DA CIÊNCIA, TECNOLOGIA E ENSINO SUPERIOR



#### D1158: Morozova et al.

#### EMRP2.3 /ST4