
Econometric methods for empirical climate modelling.
David F. Hendry with Jennifer L. Castle & Jurgen A. Doornik

The novel empirical modelling approaches at Climate
Econometrics are complementary to analyses based on laws of
conservation of energy and physical process-based models.

Climate time-series are evolving processes also subject to abrupt
shifts: jointly called wide-sense non-stationarity.

Methods for modelling wide-sense non-stationary time series

(1) Cointegration for stochastic trends.

(2) Indicator saturation estimators for outliers & shifts.

(3) Model selection by machine learning for more candidate
variables than observations.

(4) Retain theory-based models unaffected by selection.

(5) Rigorously test to evaluate empirical modelling outcomes.

Many empirical applications to climate change issues.
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Illustrative graphs of wide-sense non-stationarity:
UK CO2 emissions and fossil fuels
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(a) UK’s CO2 emissions per capita below 1860, yet real incomes
have risen more than 7-fold higher–highly non-stationary
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(b) CO2 emissions mainly driven by coal usage till mid-1950s then
that drops steadily, as does oil use after oil crises
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(c) UK’s total CO2 emissions relative to its capital stock have
fallen by 92% from 1860
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Volume of coal in Mt→
(d) CO2 emissions have no constant relations to individual fuel
usages: all variables vary hugely at different times
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Distributional shifts of total UK CO2 emissions in Mt p.a.

UK CO2 emissions, 1860−1899 
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Distributional shifts of total UK CO2 emissions in Mt p.a.

UK CO2 emissions, 1860−1899 
UK CO2 emissions, 1900−1939 
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Distributional shifts of total UK CO2 emissions in Mt p.a.

UK CO2 emissions, 1860−1899 
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Model the evolving dynamic relation of UK’s total CO2 emissions
by coal, oil, GDP and capital, allowing for shifts.
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Model selection to discover what actually matters empirically

Five distinct sub-problems must be resolved simultaneously
Initial formulation—ensure all relevant influences are included:
tackle by automatically creating lags, non-linear functions, &
indicator saturation.

Selection—handle more variables, N, than observations, T :
automatic multiple-block tree-search algorithm while retaining
theory-based variables without search.
Estimation—depends on exogeneity status of variables:
automatically assign appropriate status to all endogenous,
exogenous and retained variables.
Evaluation–check if selected model is well-specified:
automatically test for mis-specification & that parameters
invariant to location shifts.
Computation—analyzing large numbers of candidate variables:
must be fast as many sub-set multiple-block path searches.

Approach embodied in Autometrics: Doornik and Hendry (2018)
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Modelling changing relationships for UK total CO2 emissions

Failing to include relevant variables & dynamics and handle large
outliers and shifts can lead to rejecting a sound theory as shown
in (e.g.) Hendry and Mizon (2011).

Hence to capture changing relations, the model includes:

(a) coal, Ct; oil, Ot; capital stock, Kt; & GDP, Gt;
(b) dynamics for adjustments to changes in technology,
legislation & fuel prices;
(c) impulse indicators, 1{t}, for outliers (e.g., mis-measurement,
strike action);
(d) step indicators, S{j6t}, for major permanent shifts (often
policy induced).

(c) & (d) indicators only capture features not explained by (a)–(b).

Transformed capital & GDP to logs kt & gt, but linear for coal &
oil, Ct and Ot.
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Model selection proceeds in four stages

First, select impulse (IIS) and step (SIS) indicators at α1 = 0.001,
with all other explanatory variables included freely but retained.

Mis-specification tests check selected equation is well specified.

Second, select significant fuel & economic variables at α2 = 0.01,
keeping indicators from Stage 1.

Third, derive long-run, or cointegrating relation, from selected
model, and transform other variables to first differences.

Fourth, estimate and evaluate that formulation, & forecast from it.

Over 1861–2013, five impulse plus three step indicators selected:
1926=Act of Parliament creating UK’s nationwide electricity grid;
1969=start of conversion from coal gas to natural gas;
2010=Climate Change Act of 2008 plus EU’s renewables directive
of 2009.

Cointegration established and no diagnostic tests significant,
including testing constancy to 2017.
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Outcomes of modelling the UK’s total CO2 emissions
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5-variable dynamic system multi-step forecasts
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Emissions with h-step forecasts ±2σ̂f as fans with SIS, and bars
without: little difference in fit, big difference in forecasts.
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Implications and conclusions

Testing UK’s 2008 Climate Change Act 5 -year targets for CO2:
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Despite more candidate variables than observations,
econometric approach seen many successful applications.
Essential to take account of the non-stationary nature of time
series, both stochastic trends and distributional shifts.
Software available as Autometrics in OxMetrics8 (Doornik and
Hendry, 2018), gets in R (Pretis, Reade, and Sucarrat, 2018) and
newly as XLModeler, an Excel Addin: https://xlmodeler.com/.

Thank You
All rights reserved by the authors
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