Clil

Econometric methods for empirical climate modelling.

David F. Hendry with Jennifer L. Castle & Jurgen A. Doornik

The novel empirical modelling approaches at Climate
Econometrics are complementary to analyses based on laws of
conservation of energy and physical process-based models.

Climate time-series are evolving processes also subject to abrupt
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The novel empirical modelling approaches at Climate
Econometrics are complementary to analyses based on laws of
conservation of energy and physical process-based models.

Climate time-series are evolving processes also subject to abrupt
shifts: jointly called wide-sense non-stationarity.

Methods for modelling wide-sense non-stationary time series
(1) Cointegration for stochastic trends.

(2) Indicator saturation estimators for outliers & shifts.

(3) Model selection by machine learning for more candidate
variables than observations.

(4) Retain theory-based models unaffected by selection.
(5) Rigorously test to evaluate empirical modelling outcomes.

Many empirical applications to climate change issues.
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lllustrative graphs of wide-sense non-stationarity:
UK CO: emissions and fossil fuels

2013 !

UWO?\ICO
[0 —

i I N P EA R Wi
1875 1900 1925 1950 1975 2000

co,

(a) UK’s CO, emissions per capita below 1860, yet real incomes
have risen more than 7-fold higher—highly non-stationary
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(b) CO, emissions mainly driven by coal usage till mid-1950s then
that drops steadily, as does oil use after oil crises
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(c) UK’s total CO, emissions relative to its capital stock have
fallen by 92% from 1860
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(d) CO, emissions have no constant relations to individual fuel

usages: all variables vary hugely at different times
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Distributional shifts of total UK CO2 emissions in Mt p.a.
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Distributional shifts of total UK CO2 emissions in Mt p.a.
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Distributional shifts of total UK CO2 emissions in Mt p.a.
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Model the evolving dynamic relation of UK’s total CO, emissions
by coal, oil, GDP and capital, allowing for shifts.
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Model selection to discover what actually matters empiricarITV'

Five distinct sub-problems must be resolved simultaneously

Initial formulation—ensure all relevant influences are included:
tackle by automatically creating lags, non-linear functions, &
indicator saturation.

David F. Hendry (Climate Econometrics) Econometrics for Empirical Climate Modelling EGU Vienna, 2020 4/10



Climate
Econometrics

Model selection to discover what actually matters empiricarITV' "

Five distinct sub-problems must be resolved simultaneously

Initial formulation—ensure all relevant influences are included:
tackle by automatically creating lags, non-linear functions, &
indicator saturation.

Selection—handle more variables, N, than observations, T:
automatic multiple-block tree-search algorithm while retaining
theory-based variables without search.

David F. Hendry (Climate Econometrics) Econometrics for Empirical Climate Modelling EGU Vienna, 2020 4/10



Climate
Econometrics

Model selection to discover what actually matters empiricarITV' "

Five distinct sub-problems must be resolved simultaneously

Initial formulation—ensure all relevant influences are included:
tackle by automatically creating lags, non-linear functions, &
indicator saturation.

Selection—handle more variables, N, than observations, T:
automatic multiple-block tree-search algorithm while retaining
theory-based variables without search.

Estimation—depends on exogeneity status of variables:
automatically assign appropriate status to all endogenous,
exogenous and retained variables.

David F. Hendry (Climate Econometrics) Econometrics for Empirical Climate Modelling EGU Vienna, 2020



Climate
Econometrics

Model selection to discover what actually matters empiricarITV' "

Five distinct sub-problems must be resolved simultaneously

Initial formulation—ensure all relevant influences are included:
tackle by automatically creating lags, non-linear functions, &
indicator saturation.

Selection—handle more variables, N, than observations, T:
automatic multiple-block tree-search algorithm while retaining
theory-based variables without search.

Estimation—depends on exogeneity status of variables:
automatically assign appropriate status to all endogenous,
exogenous and retained variables.

Evaluation—check if selected model is well-specified:
automatically test for mis-specification & that parameters
invariant to location shifts.

David F. Hendry (Climate Econometrics) Econometrics for Empirical Climate Modelling EGU Vienna, 2020



Climate
Econometrics

Model selection to discover what actually matters empiricarITV'
[®)

Five distinct sub-problems must be resolved simultaneously

Initial formulation—ensure all relevant influences are included:
tackle by automatically creating lags, non-linear functions, &
indicator saturation.

Selection—handle more variables, N, than observations, T:
automatic multiple-block tree-search algorithm while retaining
theory-based variables without search.

Estimation—depends on exogeneity status of variables:
automatically assign appropriate status to all endogenous,
exogenous and retained variables.

Evaluation—check if selected model is well-specified:
automatically test for mis-specification & that parameters
invariant to location shifts.

Computation—analyzing large nhumbers of candidate variables:
must be fast as many sub-set multiple-block path searches.

Approach embodied in Autometrics: Doornik and Hendry (2018)
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Modelling changing relationships for UK total CO: emission'rv .

Failing to include relevant variables & dynamics and handle large
outliers and shifts can lead to rejecting a sound theory as shown
in (e.g.) Hendry and Mizon (2011).

(a) coal, C¢; oil, O¢; capital stock, Ki; & GDP, Gg;

(b) dynamics for adjustments to changes in technology,
legislation & fuel prices;

(c) impulse indicators, 1, for outliers (e.g., mis-measurement,
strike action);

(d) step indicators, S; <), for major permanent shifts (often
policy induced).
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(a) coal, C¢; oil, O¢; capital stock, Ki; & GDP, Gg;

(b) dynamics for adjustments to changes in technology,
legislation & fuel prices;

(c) impulse indicators, 1, for outliers (e.g., mis-measurement,
strike action);

(d) step indicators, S; <), for major permanent shifts (often
policy induced).

(c) & (d) indicators only capture features not explained by (a)—(b).

Transformed capital & GDP to logs k. & g+, but linear for coal &
Oil, Ct and Ot.

David F. Hendry (Climate Econometrics) Econometrics for Empirical Climate Modelling EGU Vienna, 2020 5/10



Climate
Econometrics

Model selection proceeds in four stages

First, select impulse (lIS) and step (SIS) indicators at o¢; = 0.001,
with all other explanatory variables included freely but retained.

Mis-specification tests check selected equation is well specified.
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with all other explanatory variables included freely but retained.

Mis-specification tests check selected equation is well specified.

Second, select significant fuel & economic variables at o, = 0.01,
keeping indicators from Stage 1.

Third, derive long-run, or cointegrating relation, from selected
model, and transform other variables to first differences.

Fourth, estimate and evaluate that formulation, & forecast from it.

Over 1861-2013, five impulse plus three step indicators selected:
1926=Act of Parliament creating UK’s nationwide electricity grid;
1969=start of conversion from coal gas to natural gas;
2010=Climate Change Act of 2008 plus EU’s renewables directive
of 2009.

Cointegration established and no diagnostic tests significant,
including testing constancy to 2017.
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Outcomes of modelling the UK’s total CO: emissions
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5-variable dynamic system multi-step forecasts
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Emissions with h-step forecasts 120 as fans with SIS, and bars
without: little difference in fit, big difference in forecasts.

David F. Hendry (Climate Econometrics) Econometrics for Empirical Climate Modelling EGU Vienna, 2020

8

10



Climate
Econometrics

Implications and conclusions

Testing UK’s 2008 Climate Change Act 5 -year targets for CO5:
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Despite more candidate variables than observations,
econometric approach seen many successful applications.
Essential to take account of the non-stationary nature of time
series, both stochastic trends and distributional shifts.
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Testing UK’s 2008 Climate Change Act 5 -year targets for CO5:
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Despite more candidate variables than observations,
econometric approach seen many successful applications.
Essential to take account of the non-stationary nature of time
series, both stochastic trends and distributional shifts.
Software available as Autometrics in OxMetrics8 (Doornik and
Hendry, 2018), gets in R (Pretis, Reade, and Sucarrat, 2018) and
newly as XLModeler, an Excel Addin: https://xImodeler.com/.
Thank You
All rights reserved by the authors
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