

Variations of TEC over Iberian Peninsula in 2015: effects of geomagnetic storms, solar flares, and solar eclipse

Teresa Barata¹, Anna Morozova², Tatiana Barlyaeva²

¹ Centre for Earth and Space Research of University of Coimbra, Department of Geosciences, University of Coimbra, 3000-456 Coimbra, Portugal ² Centre for Earth and Space Research of University of Coimbra, Department of Physics, University of Coimbra, 3000-456 Coimbra, Portugal

Abstract

- •Total ionospheric content (TEC) over the midlatitudinal area of Iberian Peninsula was studied using data from two locations on the west and east coasts of the peninsula.
- •The data are obtained both by GNSS receivers and an ionosonde.
- The principal component analysis applied to the TEC data allowed us to extract two main modes.
- •The variations of these modes as well as the original TEC data were studied in relations to...
 - •geomagnetic disturbances observed in March, June, October and December of 2015
 - •solar flares and overall variations of the solar UV and XR fluxes during those months
 - •a partial solar eclipse observed on March 11, 2015

Data: Total electron content (TEC)

- Vertical TEC
- 2 locations:
 - Ebro, Spain (41° N, 0.5° E)
 - Lisbon, Portugal (39° N, 9° W)

• Sources:

- GNSS TEC data from the Royal Observatory of Belgium (ROB) TEC_{ROB-LIS} and TEC_{ROB-EBR}
- GNSS TEC from SCINDA receiver in the Lisbon airport (not calibrated) TEC_{SCI-LIS}
- Ionosonde TEC provided by the Ebro Observatory TEC IONO-EBR
- Hourly series see *Figure* 1
- Time interval: only March, June, October and December of 2015

TEC variations measured at different locations &

by different instruments

EGU2020

D1759: Barata et al.

Methods

Correlation analysis

- Similarities between series were analyzed using the correlation coefficients (*r*), and their statistical significances (*p value*)
- Statistical significance (p value) was estimated using the Monte Carlo approach with artificial series constructed by the "phase randomization procedure" (*Ebisuzaki*, 1997).

Similarity & differences between TEC series

- The TEC_{SCI-LIS} is well correlated both with other TEC_{GNSS} series (mean r = 0.95) and with TEC_{ionosonde} (mean r = 0.89) see Table 1
- The fact that SCI-LIS is not calibrated does not affect the results of our analysis since we used only methods insensitive to scaling and shifting of the series.
- Series from different locations are well correlated: mean r = 0.93
- TEC_{GNSS} are well correlated with $\text{TEC}_{\text{ionosonde}}$: mean r = 0.95
- TEC_{GNSS} is systematically higher than TEC_{ionosonde} by ~3-5 TECU, probably because...
 - TEC_{ionosonde} is the TEC without plasmaspheric contribution
 - ROB data are interpolation of the actual observations to a regular grid

Correlation coefficients between different TEC series

Series	month	TEC _{ROB-LIS}	TEC _{IONO-EBR}	TEC _{SCI-LIS}
TFC	March June	0.99 0.96	0.97 0.90	0.94 0.91
ROB-EBR	October December	0.97 0.96	0.96 0.93	0.94 0.93
TEC _{ROB-LIS}	March June October December		0.96 0.87 0.94 0.89	0.95 0.95 0.97 0.95
TEC _{IONO-EBR}	March June October December			0.93 0.86 0.89 0.88

Table 1. all *p* values ≤ 0.05; r for different data sources but for the same location are in **bold**

EGU2020

 TEC series are decomposed using the principal component analysis (PCA)

• Each of TEC_{ROB-LIS}, TEC_{ROB-EBR}, TEC_{SCI-LIS} and TEC_{IONO-EBR} series with 1 h time resolution was analyzed separately during each of the month-long time intervals

Principal components analysis (PCA)

- Input data \Rightarrow covariance matrix \Rightarrow eigenvalues & eigenvectors.
- Eigenvalues ⇒ explained variances of the extracted modes
- Eigenvectors ⇒ principal components (PC) & empirical orthogonal functions (EOF).
- $PC_{\#} + EOF_{\#} = mode\#$

• PCA input matrix:

- each column contains 24 observations (every 1 h)
- number of columns = number of days in a month
- PCs = TEC daily variations of different types
 - see *Figures 2 & 3* for PC1 & PC2
- EOFs = amplitudes of daily variations for each of the analyzed days
 - see *Figures* 5 & 6 for EOF1 & EOF2

TEC Mode 1

• Regular daily variations due to the changes of the insolation – *Figure 2*

• Explains:

- 93-95% of the TEC variations for March
- 77-86% of the TEC variations for June
- 92-95% of the TEC variations for October
- 87-94% of the TEC variations for December
- TEC series are well correlated between each other (mean r = 0.95) see Table 2
- Series from different locations are well correlated: mean r = 0.97
- TEC_{GNSS} are well correlated with $TEC_{ionosonde}$: mean r = 0.95

PC1 (daily TEC variations)

Correlation coefficients between different TEC_{Mode 1} series

Series	month	TEC _{ROB-LIS}	TEC _{IONO-EBR}	TEC _{SCI-LIS}
TEC _{rob-ebr}	March June October December	0.97 0.97 0.98 0.96	0.98 0.94 0.98 0.97	0.95 0.92 0.94 0.96
TEC _{ROB-LIS}	March June October December		0.97 0.91 0.96 0.93	0.98 0.96 0.98 0.97
TEC _{iono-ebr}	March June October December			0.95 0.92 0.90 0.94

Table 2. all *p* values ≤ 0.05; r for different data sources but for the same location are in **bold**

EGU2020

TEC Mode 2

- Relatively shallow minimum of TEC around the noon and a maximum of TEC in the late afternoon (19-21 h) – Figure 3
- Explains
 - 2.4-2.9% of the TEC variations for March
 - 6.1-8.4% of the TEC variations for June
 - 1.5-3.0% of the TEC variations for October
 - 2.5-3.7% of the TEC variations for December
- TEC series are relatively well correlated between each other (mean r = 0.71) see *Table 3*
- Series from different locations are relatively well correlated: mean
 r = 0.74
- TEC_{GNSS} are moderately correlated with $TEC_{ionosonde}$: mean r = 0.60

EGU2020

PE

D1759: Barata et al.

G5.1

Correlation coefficients between different TEC_{Mode 2} series

Series	month	TEC _{ROB-LIS}	TEC _{IONO-EBR}	TEC _{SCI-LIS}
	March	0.94	0.91	0.78
TEC	June	0.91	0.81	0.94
I EC ROB-EBR	October	0.73	0.6	0.80
	December	0.93	0.35	0.74
TEC _{ROB-LIS}	March		0.89	0.80
	June		0.69	0.91
	October		0.34	0.69
	December		0.28	0.81
TEC _{iono-ebr}	March			0.74
	June			0.84
	October			0.49
	December			0.11

Table 3. all *p* values ≤ 0.05; r for different data sources but for the same location are in **bold**

EGU2020

Data: Space weather parameters

- Geomagnetic field:
 - Dst
 - Kp
 - K_{COI} (local K-index based on the data of the Coimbra (Portugal) geomagnetic observatory
 - AE (auroral electrojet index)
- UV and XR solar flux:
 - UV: Mg II composite series a proxy for the spectral solar irradiance variability in the spectral range from UV to EUV (*Snow et al., 2014*)
 - UV: F10.7 index (OMNI database)
 - XR: Solar EUV Experiment (SEE) for the NASA TIMED mission at the wavelength 0.5 nm (*LISIRD database*)
- Number of solar flares of classes C, M and X per day and their daily sum (NGDC database)
- Hourly and daily mean series

Geomagnetic storms and disturbances of 2015

- Only disturbances with $Dst \leq -50$ nT (see *Figure 4*):
 - -50 nT ≤ Dst < -100 nT "moderate disturbances"
 - June 8-9 (Dst = -73 nT)
 - October 18-19 (Dst = -48 nT)
 - December 14-15 (Dst = -47 nT)
 - $Dst \leq -100 \text{ nT} \text{``storms''}$
 - March 17-18 (Dst = -223 nT) strongest storm of 24^{th} solar cycle
 - June 22-26 (Dst = -204 nT) second strongest storm of 24^{th} solar cycle
 - October 7-8 (Dst = -124 nT)
 - December 20-21 (Dst = -155 nT)

Variations of the geomagnetic indices during

geomagnetic disturbances

Figure 4. Kp and K_{COI} – blue, AE – red, Dst – green

> Rectangles mark geomagnetic storms with Dst < -100 nT

Geomagnetic indices: 1h values, June 8-9, 2015

- Dst - AE - Kp - Kctr

24

hours

EGU2020

D1759: Barata et al.

48

Classification of ionospheric storms

Positive ionospheric storm:

- amplitude of the daily TEC variation increases during 1st (maybe even 2nd) day(s) of a geomagnetic disturbance
- Negative ionospheric storm:
 - amplitude of the daily TEC variation decreases during 1st (maybe even 2nd) day(s) of a geomagnetic disturbance

Positive-negative ionospheric storm:

 amplitude of the daily TEC variation increases during 1st day and decreases during 2nd day of a geomagnetic disturbance

TEC and TEC Mode 1 response to geomagnetic disturbances

- The types of the ionospheric storm defined from the TEC and TEC_{Mode1} series are the same
- The analysis of Mode 1 allows easy classification of an ionospheric storm:
 - if the amplitude of the Mode 1 (= EOF1) increases during 1-2 days of the ionospheric storm ⇒ positive ionospheric storm
 - if the amplitude of the Mode 1 (= EOF1) decreases during 1-2 days of the ionospheric storm ⇒ negative ionospheric storm
 - if the amplitude of the Mode 1 (= EOF1) increases during 1st day and decreases during 2nd day of the ionospheric storm ⇒ positive-negative ionospheric storm

• EOF1 – see Figure 5

EOF1 (daily TEC variations)

TEC and TEC_{Mode 1} response to geomagnetic disturbances

• 4 strong geomagnetic storms of 2015:

- March 17-18 positive-negative ionospheric storm
- June 22-26 positive-negative ionospheric storm
- October 7-8 negative ionospheric storm
- December 20-21 positive-negative ionospheric storm (concurs with two C-class flares on December 21)

• 3 moderate geomagnetic disturbances of 2015:

- June 8-9 positive-negative ionospheric storm
- October 18-19 positive-negative ionospheric storm
- December 14-15 no ionospheric response

response to geomagnetic disturbances

TEC_{Mode 2} is characterized by...
 a second daily peak

or

• a sharp deep in the TEC variations during the afternoon hours

• EOF2 – see *Figure 6*

EGU2020

D1759: Barata et al.

G5.1

Changes of EOF2 sign during first 2 days during geomagnetic disturbances

• 4 strong geomagnetic storms of 2015:

- March 17-18 +/-
- June 22-26 +/-
- October 7-8 +/+
- December 20-21 +/-(~0)

• 3 moderate geomagnetic disturbances of 2015:

- June 8-9 –/+
- October 18-19 +/-
- December 14-15 –/–

Correlation coefficients:

TEC EOF1 & EOF2 vs geomagnetic indices

Series	March <i>lag = 1 d</i>	June lag = 1 d	October lag = 1 d	December <i>lag</i> = o d
Dst	0.56 (<0.01)	0.51 (0.05)	0.75 (0.14)	-0.63 (<0.01)
Кр	-0.43 (0.05)	-0.35 (0.18)	-0.64 (0.17)	0.76 (<0.01)
K _{COI}	-0.42 (0.07)	-0.38 (0.07)	-0.66 (0.18)	0.71 (<0.01)
AE	-0.55 (<0.01)	-0.35 (0.16)	-0.74 (0.09)	0.77 (<0.01)
EOF2				
Series	March <i>lag = 1 d</i>	June <i>lag = 2 d</i>	October <i>lag</i> = o d	December <i>lag</i> = o d
Dst	0.34 (0.10)	0.42 (<0.01)	-0.62 (0.07)	-0.52 (<0.01)
Кр	-0.35 (0.09)	-0.4 (<0.01)	0.69 (<0.01)	0.61 (<0.01)
K _{COI}	-0.32 (0.12)	-0.37 (<0.01)	0.70 (<0.01)	0.57 (<0.01)
AE	-0.44 (0.02)	-0.37 (0.06)	0.71 (<0.01)	0.72 (<0.01)

FOF1

Table 4. only $|r| \ge 0.2$ and p value ≤ 0.2 (in round parentheses) are shown; highest in absolute values r for each month are in **bold** r are calculated with a lag (geomagnetic indices lead)

EGU2020

TEC response to geomagnetic disturbances: Summary

- Amplitude of the TEC daily variations (TEC and TEC_{Mode1}):
 - 3 out of 4 geomagnetic storms of 2015 with Dst < -100 nT resulted in the positive-negative ionospheric storms
 - 2 out of 3 geomagnetic disturbances of 2015 with Dst < -50 nT resulted in the positive-negative ionospheric storms

• Appearance of the second daily maximum/afternoon deep (TEC_{Mode 2}):

- 3 out of 4 geomagnetic storms of 2015 with Dst < -100 nT showed second maximum of TEC during 1st day and an afternoon deep during 2nd day of the storm
- 1 out of 3 geomagnetic disturbances of 2015 with Dst < -50 nT showed second maximum of TEC during 1st day and an afternoon deep during 2nd day of the storm

 Both EOF1 and EOF2 correlate with geomagnetic activity variations – see Table 4

EGU2020

Solar flares and UV & XR solar flux variations in 2015

Solar flares

- X2.1 solar flare on March 11, 16:11 UT
- Significant numbe of flares of classes C and M during every analyzed month

Monthly variations of the solar UV and XR fluxes are affected by...

- mean level of the solar activity
- number of flares

• Daily numbers of solar flares and variations of the solar UV & XR fluxes are shown in *Figure* 7 for March, June, October and December of 2015.

Solar flares and UV & XR solar flux

Correlation coefficients: TEC EOF1 vs solar UV & XR fluxes

Series	March	June	October	December
UV: F10.7	0.49 (0.01)	0.69	0.84 (0.02)	
UV: Mg II	0.45 (0.02)	0.74 (0.01)	0.87 (0.05)	0.26
XR	0.2	0.69 (0.09)	0.59 (0.15)	0.34

Table 5. only $|r| \ge 0.2$ and p value ≤ 0.2 (in round parentheses) are shown; highest in absolute values r for each month are in **bold**

NB : *r* for EOF₂ are low and statistically non-significant

More flares ⇒ more UV& XR ⇒ EOF1 increases
Only EOF1 (= amplitude of the TEC daily variations) correlates with variations of the solar UV & XR fluxes – see *Table 5*

Partial solar eclipse on March 20, 2015

- Maximal obscuration at Iberian Peninsula ~60% at 09:00 UT
- EOF1 (= amplitude of Mode 1) on March 20 $\approx \frac{1}{2}$ EOF1 on March 19
- Around 09:00 UT there is a sharp deviation from the steady growth of TEC during morning hours

TEC response to flares and solar irradiance: Summary

- The X2.1 solar flare on March 11 had no significant effect on TEC
- The overall increase/decrease of the flares number as well as changes of the solar UV & XR fluxes during analyzed months resulted in the increase/decrease of the amplitude of the TEC daily cycle (= EOF1)
- No relation between EOF2 associated with the solar UV & XR fluxes
- The partial solar eclipse (~60% around 09:00 UT on March 20) affects the amplitude of the daily cycle (= EOF1)
- There is also sharp deviation from the regular daily cycle observed around 09:00 UT
- No response to this event in the variations of Mode 2 was found.

Final Conclusions

- •Five of seven analyzed geomagnetic storms were associated with positive-negative ionospheric storms
- •This response can be indentified analyzing both the amplitude of the TEC daily cycle and the amplitude of the Mode 1 (= EOF1).
- •Four out of seven analyzed geomagnetic storms were associated with variations of Mode 2 (=EOF2) that can be described as the appearance of the second daily peak on the 1st day of the storm and a deep in TEC variations on the 2nd day.
- Only amplitude of the daily TEC cycle (= amplitude of Mode 1 = EOF1) responds to...
 - solar flares and overall variations of the solar UV & XR fluxes
 - a partial solar eclipse was observed in March 2015

Results of this study are available as a preprint (*Morozova et al.*, 2020) and under review in *Space Weather*.

EGU2020

Data sources

- The SCI-LIS TEC data are available at Barlyaeva, T., Barata, T., Morozova, A., 2020. Datasets of ionospheric parameters provided by SCINDA GNSS receiver from Lisbon airport area, Mendeley Data, v1 <u>http://dx.doi.org/10.17632/kkytn5d8yc.1</u>
- The TEC ROB-LIS and ROB-EBR data sets are from the Royal Observatory of Belgium (ROB) data base and are publicly available in IONEX format at <u>ftp://gnss.oma.be/gnss/products/IONEX/</u>, see also *Bergeot et al. (2014)* for more information.
- We also wish to thank the Ebro Observatory and Dr. Germán Solé for the provision of ionosonde data (TEC IONO-EBR).
- We acknowledge the use of the Dst index from the Kyoto World Data Center <u>http://wdc.kugi.kyoto-u.ac.jp/dstae/index.html</u>.
- Geomagnetic data measured by the OGAUC are available by request (<u>pribeiro@ci.uc.pt</u>).
- We acknowledge the use of the Kp index from the GFZ German Research Centre for Geosciences <u>https://www.gfz-potsdam.de/en/kp-index/</u>.

Data sources

- The F10.7 index was also obtained from the OMNI data base at <u>https://omniweb.gsfc.nasa.gov/form/dx1.html</u>.
- The Mg II data are from Institute of Environmental Physics, University of Bremen <u>http://www.iup.uni-bremen.de/gome/gomemgii.html</u>, see also *Snow et al. (2014)* for more information.
- The data on the variations of the solar XR flux are from the LASP Interactive Solar Irradiance Data Center (LISRD, http://lasp.colorado.edu/lisird/). LISIRD provides a uniform access interface to a comprehensive set of Solar Spectral Irradiance (SSI) measurements and models from the soft X-ray (XUV) up to the near infrared (NIR), as well as Total Solar Irradiance (TSI). The XR_{TIMED} data are from the Solar EUV Experiment (SEE) measures the solar ultraviolet full-disk irradiance for the NASA TIMED mission. Level 3 data represent daily averages and are filtered to remove flares available at http://lasp.colorado.edu/lisird/data/timed_see_ssil3/.
- The X-ray Flare dataset was prepared by and made available through the NOAA National Geophysical Data Center (NGDC). The data about the solar flares for 2015 are from https://www.ngdc.noaa.gov/stp/space-weather/solar-data/solar-features/solar-flares/x-rays/goes-xrs-report_2015_modifiedreplacedmissingrows.txt.

References

- Bergeot N., J.-M. Chevalier, C. Bruyninx, E. Pottiaux, W. Aerts, Q. Baire, J. Legrand, P. Defraigne and W. Huang (2014), Near real-time ionospheric monitoring over Europe at the Royal Observatory of Belgium using GNSS data, J. Space Weather Space Clim., 4, A31, doi: 10.1051/swsc/2014028.
- Ebisuzaki, W. (1997), A method to estimate the statistical significance of a correlation when the data are serially correlated, J. Clim., 10 (9), 2147-2153.
- Morozova, A.L., T. V. Barlyaeva, T. Barata (2020). Variations of TEC over Iberian Peninsula in 2015: geomagnetic storms, solar flares, solar eclipse, arXiv:1912.00959, <u>https://arxiv.org/abs/1912.00959</u>
- Snow, M., M. Weber, J. Machol, R. Viereck, and E. Richard, (2014), Comparison of Magnesium II core-to-wing ratio observations during solar minimum 23/24, J. Space Weather Space Clim., 4, A04, doi:10.1051/swsc/2014001.

Acknowledgement

- CITEUC is funded by National Funds through FCT Foundation for Science and Technology (project: UID/MULTI/00611/2019) and FEDER – European Regional Development Fund through COMPETE 2020 – Operational Programme Competitiveness and Internationalization (project: POCI-01-0145-FEDER-006922).
- This research was supported through the project "SWAIR Space weather impact on GNSS service for Air Navigation", ESA Small ARTES Apps, <u>https://goo.gl/YN2iJf</u>

FCT Fundação para a Ciência e a Tecnologia MINISTÉRIO DA CIÊNCIA, TECNOLOGIA E ENSINO SUPERIOR