D3289 | EGU2020-3458

EGU2020: Sharing Geoscience Online 2020.05.04–08

Seamless Detection of Cutoff Low and Preexisting Trough

Meiji Honda¹, Satoru Kasuga², Jinro Ukita¹, Shozo Yamane³, Hiroaki Kawase⁴, Akira Yamazaki⁵

¹Faculty of Science, Niigata University, Niigata, Japan.
²Graduate School of Science and Technology, Niigata University, Niigata, Japan.
³Department of Environmental Systems Science, Doshisha University, Kyotanabe, Japan.
⁴Meteorological Research Institute, Japan Meteorological Agency, Tsukuba, Japan.
⁵Application Laboratory, Japan Agency for Marine-Earth Science and Technology, Yokohama, Japan.

<u>Cutoff low</u> and Tornado event on 15 Apr 2015 (=upper tropospheric low)

500hPa height [m] & temp. [°C] 15 JST(=UTC+9h)

- Cutoff lows last up to 4 days (Nieto et al. 2015).
- Cutoff lows often accompany meso-scale disturbances, e.g. tornadoes.
- But, the lifecycles of such cutoff lows have never studied.

Problems

- "Intensity" of the cutoff lows has not been discussed enough.
- There is no such method that capture both cutoff lows and troughs.

Schematic life cycle and previous detectoin methods

Cutoff lows are developed from each "preexisting trough" (Palmén and Newton 1969)

Height minimum based methods • The

preTR \times , intensity \times

Vorticity maximum based methods preTRO, intensityO

- The most conventional methods (e.g. Nieto et al. 2005)
- detect COLs with longer duration including preTR (~8 days; Pinheiro et al. 2017)
- objective distinction for COL and preTR (Fuenzalida et al. 2005; Murray and Simmonds 1991)
- but, noisy detections because of derivative operations.

Performance goals for a new method to detect cutoff lows (COL) and preexisting troughs (preTR)

- It can seamlessly detect location of both.
- It can seamlessly evaluate intensity of both.
- It can objectively distinct both.
- It requires single variable (geopotential height).
- <u>It requires no derivative operation</u>.

Data: JRA-55 Reanalysis (Kobayashi et al. 2015; Harada et al., 2016) 200hPa geopotential height Z [m] 6-hourly, 1.25°x1.25° (~110kmx110km)

What is "intensity" of COL?

"intensity" = height difference? \triangle anomaly from climatology or zonal mean \triangle difference of closed contour and its interior bottom

To minimize the subjectivity, we use a horizontal profile of height.

In the case x_b is <u>NOT</u> known { functionalize S_r with x and r It will peak at x_b expand S_r for east and west if depression is symmetry.

200hPa height Z (contours), F_r (shades), local Z min. (\checkmark)

Algorithm to obtain S_o , r_o , x_b from Z of grided data

② Make an array of local max. of F_r with respect to r at all grids (F_o) .

- (3) Search spatial local max. of F_o and obtain params. below
- (x_b, y_b) : location of the bottom
 - S_o : optimal slope (=32.7 m (100 km)⁻¹)
 - r_o : optimal radius (=1100km)

* Note that these params. are estimated values for an isotropic depression.

 $F_o(x, y) \equiv \max_r(F_r(x, y))$

40

- 35

30

²⁵ (my 001) 15 (100 km)

E 10

5

0

Definition of the local background slope S_b

 $S_b(\theta)$ is numerically defined as the magnitude (direction) of gradient of a surface paralleling to both m and n.

 $S_b = 22.25 \text{ m} (100 \text{ km})^{-1}$ $\theta = -1.41 \text{ rad} (-83.23^{\circ} \text{ from the east})$

Examples of S_o (colored dots), S_b (colored arrows), r_o (green circle)

200hPa height Z (contours), F_o (shades), local Z min. (\bigtriangledown)

 Successfully represent the lifecycle from preTR to COL with S_o and achieve 18-hour (3-timestep) earlier detections.

Remained problems

*F*_o m/100 km & Z m 200hPa 1200 UTC 11 Apr 2015

What S_o , r_o , S_b mean for preTR?

*F*_o m/100 km & Z m 200hPa 1200 UTC 13 Apr 2015

Why height min. and F_o max. are displaced?

=> verify with "ideal height fields"

Ideal height fields Z^* and F_r , F_o fields (-1.0–1.0; 201x201 grids)

• F_o is independent of BG and evaluating the amplitude of the pure vortices (a).

· i.e. preTRs can be detected as weak vortices behind BG ("seamless detection").

Ideal height fields Z^* and F_r , F_o fields (-1.0–1.0; 201x201 grids)

• F_o is independent of BG and evaluating the amplitude of the pure vortices (a).

· i.e. preTRs can be detected as weak vortices behind BG ("seamless detection").

The displacement of F_o max. and Z min. (r_l) and a ratio of BG slope (S_b) and optimal slope (S_o)

SR=1.34 may be useful for an instant distinction between COL and preTR.

Summary

We introduced the new method to detect cutoff lows (COL) and preexisting troughs (preTR) based on the optimal slope (S_o) .

- \checkmark It can seamlessly detect location of both.
- $\checkmark~$ It can seamlessly evaluate intensity of both.
- $\checkmark~$ It can objectively distinct both.
- ✓ It requires single variable (geopotential height).
- $\checkmark~$ It requires no derivative operation.
- and...
- It can provide local BG slope (S_b) for each depression. *novel point
- The slope ratio (SR= S_b/S_o) would be useful to distinguish them.

Future works

- clairfy climatological features of COLs accompanying tornadoes
- understand the physics of such COLs
- contribute to reduce risks of the next strongest tornadoes...