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Introduction & Motivation |
period = 1979-1995

The ECMWEF Reanalysis ORASSH (Zuo et al. 2018) has been used to
study the long term variability of the AMOC: a comparison has been
carried out both with the in-situ data of the RAPID program, which
monitor the Volume Transport at 26.5°N from 2004, and the members
of CMEMS_GLO_RAN project, which gather other reanalyses from
1993 onward. We observed a declining signal of the AMOC strength latitude [degrees north]
signal in the mid-1990s, of about 5Swv, which we tried to characterize period = 2000-2017
from a dynamical point of view. The AMOC strength is defined for
cach latitude y, depth z and time ¢ as:

w(y,x,t):max/ dz’/ dz v(z,y, 2, 1). (1)
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where 1 is the free surface of the ocean, v is the meridional velocity
and x,, z. the Atlantic Boundaries for each latitude.
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Fig. 1: The shift at the RAPID latitude: Comparison with CMEMS and in-situ data.
All the data show a good agreement on the common period. We show
also that the shift is present at other latitudes, in particular involving
depths between 1000m and 3000m, and latitudes between 25° N and
45° N . Searching for reasons of the shift in the Labrador Sea, we found
a transition pattern in the same years, regarding temperature, salinity,
potential density and also heat fluxes. The use of a dynamical metric o o R N N A
(Liu et al. 2017) helped us to understand that this declining signal - -
can be thOU_ght as a Stabihty regime transition of the AMOC. Fig. 2. The shift in the entire Stream Function, and variablity in the Labrador Sea

Analysis & Conclusions Results

The dynamical metrics X2 characterizing the AMOC-induced Freshwater transport follows Liu et al.
2017 definition:

Surface KE extremes 3.0 period 1979-1995

Stability Regime Diagram
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We found that passing the transition there’s an activation of the Eastern Atlantic expressed in a n ﬂNV
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redistribution of surface Kinetic FEnergy FExtreme Fvents, which we have defined as N

lLitx >0
Dif z < 0O (3)
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this redistribution can be interpreted as a balance mechanism for the loss of Gravitational Potential
Energy suffered by the AMOC (Kuhlbrodt et al. 2007).

Conclusion: We have shown that this transition is coherent with physical processes descending S B
from a decreased mass transport. Through dynamical metrics we found a different connectivity (2 > e SV R
0 = ¥ < 0) among the North and South Atlantic domain, linked to the West-East redistribution of

activity in the two periods (N'). Mechanisms at the origins of this link need further investigations. Fig. 3: Regime Stability Diagram and Kinetic Energy Extreme Events redistribution
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