Seasonal changes in stable nitrogen isotopic composition in fine aerosols at a rural background station Košetice (Central Europe).

Petr Vodička^{1,2}, Kimitaka Kawamura², Jaroslav Schwarz¹, Bhagawati Kunwar², Vladimír Ždímal¹

1) Institute of Chemical Process Fundamentals of the Czech Academy of Science, Department of Aerosols Chemistry and Physics, Czechia 2) Chubu Institute for Advanced Studies, Chubu University, 1200 Matsumoto-cho, Kasugai 487–8501, Japan

EGU2020-3469

Site – Košetice Observatory

Central European rural background site

Characteristic: agricultural landscape and forests, out of range of major soureces of pollution

location: N: 49° 34' 24.13" E: 14° 4' 49.67" Altitude: 534 m ASL

Sampling

- PM1 aerosol fraction, quartz fiber filters

- Period: 27 Sep 2013 – 9 Aug 2014 (every 2nd day)

- 146 samples with 24-h time resolution

Analyses

- TC, TN, δ^{13} C and δ^{15} N
- PM1 mass weight (±1 μg)
- Ion chromatography: anions (SO₄²⁻, NO₃⁻, Cl⁻, NO₂⁻, oxalate) and cations (Na⁺, NH₄⁺, K⁺, Ca²⁺, Mg²⁺)
- OrgN = TN $14*[NO_3^-/62 + NH_4^+/18]$
- meteorological data (wind speed and direction, relative humidity, temperature, pressure, solar radiation) and trace gasses (SO_2 , CO, NO_2 , NO_X , O_3).

Time series - TN, δ^{15} N (blue), and TC, δ^{13} C (red)

$$\delta^{15} N_{TN} = \delta^{15} N_{NO3} * f_{NO3} + \delta^{15} N_{NH4} * f_{NH4} + \delta^{15} N_{OrgN} * f_{OrgN}$$

δ^{15} N vs. NO3

- NO₃ in PM1 mainly from NH₄NO₃
- $NH_4NO_3(s,aq) \leftrightarrow NH_3(g) + HNO_3(g)$
- NO_3 amount drive an exponential changes in $\delta^{15}N$
- NO₃ reach values around 14‰
 ... similar to other studies
 where sources are coal or biomass burning.
- Different process (mechanism) during the Event and the majority of data

$\delta^{15}N$ vs. temperature

- Studies> diff. dependence of $\delta^{15}N$ on temp. for NO_3 and NH_4
- Temp. drive equilibrium $NH_3(g) \longleftrightarrow NH_4(p)$ it is stopped in winter and summer

Corr.>	δ ¹⁵ N vs. Temp.	δ ¹⁵ N vs. NO3-N/TN	δ ¹⁵ N vs. NH4-N/TN	
Year	0.82	-0.77	0.42	
Autumn	0.58	-0.39	0.16	
Winter	0.30	-0.04	-0.30	
Spring	0.52	-0.73	0.60	
Summer	-0.21	-0.26	0.52	
Event	-0.43	0.98	-0.86	

δ^{15} N in TN and molar ratios of NH₄+/SO₄²⁻

- Summer corr. δ^{15} N vs. NH₄(r=0.40) and SO₄²⁻ (r=0.51)
- Summer ratio below 2 => not enough NH₃ in gas phase = > excluding NO₃ from aerosol phase and disrupt thermal equilibrium NH₃(g) ← NH₄(p).
- Silvern et al. (2017) organic aerosols can retarding H₂SO₄-NH₃ thermal equil. under ratio of below 2, even when enough NH₃.
- Summer coating of particles by organic supported by corr. with temp (r=0.39), and O_3 (0.66)
- Event...

Winter Event

NOAA HYSPLIT MODEL
Backward trajectories ending at 0600 UTC 05 Feb 14
GDAS Meteorological Data

Winter Event

Winter Event

- 15 N mixture of aerosols from heating (higher amounts of NO $_3$ and δ^{15} N in TN (ca. 14‰)), which are gradually replaced by 15 N-depleted agricultural aerosols.
- Whole process results from low temperatures which first support dry deposition of NH₃ followed by unidirectional (kinetic) reaction of lighter isotope NH₃(g) → NH₄+(p), originating mainly from agriculture sources in SE directions from the Košetice station.

Conclusions

- Clear seasonal pattern of $\delta^{15}N$ in TN the main and gradual changes during spring (opposite in autumn).
- \bullet comparison with IC shows different dependence of $\delta^{15}\text{N}$ for NO_3 and NH_4 nitrogen
- ¹⁵N enrichment mechanism is controlled by temperature, NO₃ concentrations and therm. equilibrium between NH₃(g) \longleftrightarrow NH₄(p).
- The highest winter NO₃ conc. (mainly NH₄NO₃) => δ^{15} N around 14 ‰ => value represented nitrogen from coal and biomass burning
- Summer: $NH_3(g) \longleftrightarrow NH_4(p)$ therm. equilibrium suppressed. The most enriched ¹⁵N represents aged $(NH_4)_2SO_4$ and Org.N
- Event unidirectional (kinetic) reaction of lighter isotope $NH_3(g) + H_2SO_4 \rightarrow (NH_4)_2SO_4$ (p). (low temperature, NO_3 excluded from partitioning in aerosol) >> probably agriculture nitrogen (cow waste).

Reference:

Vodička, P., Kawamura, K., Schwarz, J., Kunwar, B. and Ždímal, V.: Seasonal study of stable carbon and nitrogen isotopic composition in fine aerosols at a Central European rural background station, Atmos. Chem. Phys., 19, 3463–3479, 2019.

Acknowledgement:

- project No. LM2015037 (the Ministry of Education, Youth and Sports of the Czech Republic)
- project "ACTRIS-CZ RI" (No. CZ.02.1.01/0.0/0.0/16_013/0001315)
- the Japan Society for the Promotion of Science (JSPS) through Grant-in-Aid No. 24221001

Email: vodicka@icpf.cas.cz

Thank you for your attention!

Spearman correlation coefficients (r) of $\delta^{15}N$ with various tracers. Only bold values are statistically significant (p-values < 0.05)

δ^{15} N vs.	Autumn	Winter*	Spring	Summer	Year*	Event
TN	-0.30	-0.40	-0.70	0.36	-0.54	0.93
TN/PM1	-0.63	-0.50	-0.02	0.37	-0.35	0.36
NO ₃ -N/TN	-0.39	-0.04	-0.73	-0.26	-0.77	0.98
NH ₄ ⁺ -N/TN	0.16	-0.30	0.60	0.52	0.42	-0.86
OrgN/TN	0.20	0.38	0.20	-0.33	0.51	-0.71
NO ₃ -	-0.41	-0.35	-0.80	-0.03	-0.78	0.96
NH ₄ ⁺	-0.22	-0.42	-0.61	0.40	-0.44	0.75
OrgN	-0.26	-0.27	-0.56	0.30	-0.25	0.71
SO ₄ ²⁻	-0.07	-0.38	-0.30	0.51	0.03	-0.57
Cl ⁻	-0.37	-0.18	-0.74	-0.37	-0.74	0.99
O ₃ (gas)	0.45	0.14	0.15	-0.02	0.40	-0.71
NO ₂ (gas)	-0.53	-0.34	-0.72	0.20	-0.64	0.86
NO ₂ /NO (gas)	-0.51	-0.26	-0.82	0.14	-0.76	0.82
Temp.	0.58	0.30	0.52	-0.21	0.77	-0.43

$\delta^{15}N$ vs. OrgN

- Most samples in concentration range
 0.1-0.5 ug/m3
- More driven by same changes like NH4, especially during summer
- With increasing
 NO3+NH4 also OrgN
 increase to values
 around 14 % >> in this
 case probably OrgN
 connected with
 emissions from
 biomass burning.

