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Introduction TU
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Low earth orbiting (LEO) satellites with onboard global navigation satellite system (GNSS)
receiver offer good opportunities to use their position for different research branches like

gravity field observation or
analyzing solar event impacts on LEO satellites

To achieve high accurate research results the position of the satellite has be determined as
precisely as possible.

The kinematic strategy for precise orbit determination (POD) of LEO satellites uses only
geometric observations to estimate the satellite orbit and does not take any forces into
account.

This strategy requires a large amount of observation data for one epoch to determine the
three-dimensional satellite position. One possibility to get this data is the usage of the
spaceborne GNSS technology, which provides a high number of accurate observations.
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Raw Observation Approach - Basics TU

= Zehentner (2016) shown a method to determine the kinematic orbit based on raw and
unchanged GNSS observations.

= This method use a least-square adjustment and systematic effects are corrected or will be
estimated as parameter.

= Kinematic orbit positioning applying the raw observation approach by using a least-squares
adjustment has shown promising results with a high accuracy.
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Ground station-GNSS network processing

Consistent reprocessing (2000 — up to now) - GPS orbit, clock and bias solutions

n Barbara Suesser-Rechberger et al.

GPS satellites

= Update to date force modelling
Annual & trend gravity field (GOCOOQ06s)
Atmosphere and Ocean variations (AOD1B)

= Estimated Antenna Center Variations
from previous iteration
Normals combination of stations, Jason 1/2/3,
GRACE, GRACE-FO observations

Ground station network

= ~200 IGS stations daily
= Full 30 second sampling
= Atmosphere and Ocean Loading (AOD1B)

= 5 second clock densification
using CODE final solution
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GPS Antenna Center Variations ﬂ'!;U

Estimated for each SVN

For each signal (Phase L1/L2, Code C1C, C1W, C2W)
Azimuth, zenith dependency

Based on ANTEX IGS R3
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GPS Antenna Center Variations ﬂ'!;U

Estimated for each SVN

For each signal (Phase L1/L2, Code C1C, C1W, C2W)
Azimuth, zenith dependency

Based on ANTEX IGS R3
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Kinematic Orbit Processing (1)

(A
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LEO satellite missions
= CHAMP

GRACE

Jason 1/2/3
TerraSAR-X
TanDEM-X

GNSS-LEO satellite
= Determination of the orbit and set up the normal
equations for LEO & GNSS antenna center

variations (ACV) using least-squares adjustment.

= Ambiguities are fixed, this causes
more stable orbit and
clearly reduced long-wave variations
= Determination of the residuals e = Al — AAX

Measurement accuracy
= Analyzing the accuracy from the residuals e, is
used for next estimation.

LEO antenna center variations determination
= Solving the LEO ACV normal equations, solution
is used for next estimation.

GNSS antenna center variations determination

= Solution of the GNSS ACV normal equations is
used for Ground station-GNSS network and
kinematic orbit determination.
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Kinematic Orbit Processing (2) ﬂ'!;U

= Before the precise orbit can be determined following data of every used LEO satellite have to
be collected
GNSS raw data, attitude data, coarse orbit (initial orbit)
Meta-data information of the satellite including informations about the satellite reference
frame, antenna reference frame/point, center of mass, antenna phase center offsets ...

Spacecraft Point X (mm) Y (mm) Z (mm) Boresight (4+z) Azimuth(+y)

TerraSAR-X POD main antenna (ARP) +1604.3 —16.8 —1065.2 (0,0, =1) (0, -1,0)

POD aux antenna (ARP) +1234.3 —16.8 —1065.2 (0,0, =1) (—1,0,0)
SLR reflector —1307.7 —212.1 +953.8
GPS main antenna (ARP) 0.0 0.0 —444.0 (0,0, =1) (0, =1,0)
SLR reflector +600.0 —3275 +217.8

Frequency N (+y) (mm) E (+x) (mm) U (+2) (mm)

L1 1.49 + 0.09 0.60 £ 0.12 —7.01 £ 048
L2 0.96 + 0.26 0.86 = 0.20 2229 4+ 0.44

Examples of satellite meta-data [Source: Montenbruck, O., Garcia-Fernandez, M., Yoon, Y., Schon, S., and Jagagi,
A. (Jan. 2009).“Antenna phase center calibration for precise positioning of LEO satellites.” In: GPS Solutions 13.1,
pp. 23-34.]
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LEO Antenna Center Variations (1) ﬂ'!;U

= Example: TerraSAR-X
= Resulting ACV pattern for period 01-2015

Code C1C Code C1W Code C2W Phase L1/L2

B AT A - S T B

= Resulting ACV pattern for period 01-2016
Code C1C Code C1W

- I
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LEO Antenna Center Variations (2)

switches between main and redundant antenna

occultation antenna which affects the GNSS antenna
For achieving high accuracy results the exact estimation of the antenna center variations are

Basically it is assumed that antenna center variations do not vary over time.
But time-variant antenna center variations can be caused by e.g.

Ty

of paramount importance - investigation if the antenna center variations changes over time

Is absolutely necessary.
Example: GRACE
Period 02-2014 to 06-2015

Code C1C

Occultation antenna on

Occultation antenna off
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Measurement Accuracy

= Accuracy calculation is related to azimuth and elevation.

= Example: TerraSAR-X, using ACV solution from period 01-2016
Code Signals

I ! I P

I I I
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Kinematic Orbit Results
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= Example TerraSAR-X: Difference of kinematic orbit and rapid science orbit (RSO)
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Outlook TU
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Next to gravity observations, precise kinematic orbit determination can be used for
investigation of space weather.

= Strong sun events like coronal mass ejections (CME) affects Earth-orbiting satellites in such
a way that the drag force acting on the spacecraft is enhanced and subsequently leads to an
additional storm induced orbit decay.

= Satellites equipped with accelerometers offer the possibility to deduce information on the
current state of the atmospheric neutral mass density based on the measurements of non-
gravitational forces acting on the spacecraft. Variations of the neutral density triggered by
CME induced geomagnetic storms can be used to estimate the storm induced orbit decay of
the satellite.

= Since satellite mission with on board accelerometers are extremely rare the information shall
be gathered additionally from GNSS based kinematic orbits.

= The advantage of this approach is, that theoretically almost every LEO satellite mission
which is tracked by GNSS can be used for the evaluation.

= Since all these satellites are orbiting at different altitudes between 300-800km, a tomography
of the upper Earth’s atmosphere is feasible and the impact of a solar event on a satellite can
be estimated as a function of its orbital altitude.
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