The Garden Soil Project EGU 2020

Short version on <u>A case study investigating the effects of EDTA washing and</u> <u>amendments on trace metal-contaminated soil</u>

Wolfgang Friesl-Hanl, Christoph Sebastian Noller, Rebecca Hood-Nowotny, and Andrea Watzinger Mon, 04 May, 14:00–15:45 | D2351

University of Ljubljana

)er Wissenschaftsfonds.

LOVENIAN RESEARCH AGENCY

Overview 1

• Historical contamination (Pb~1000 ppm, Cd~5 ppm) Austria

- Friesl-Hanl W., Platzer K., Riesing J., Horak O., Waldner G., Watzinger A., Gerzabek M.H. (2017). Non-destructive soil amendment application techniques on heavy metal-contaminated grassland: Success and long-term immobilising efficiency. Journal of Environmental Management 186: 167-174. http://dx.doi.org.1624.pisces.boku.ac.at/10.1016/j.jenvman.2016.08.068
- Soil washing by the company ENVIT (SLO) with EDTA, including EDTA recycling (~95 %)
 - Voglar, D., Lestan, D., 2012. Pilot-scale washing of metal contaminated garden soil using EDTA. Journal of hazardous materials 215, 32–39.

Overview 2

• Pre-experiments

- Pot experiment with zero valent iron (ZVI)
- Pot experiment with different organic amendments
- Cultivar screening and selection experiments

• Field-experiment

- 12 raised beds (each appr. 1000 kg)
- Different cultivars of radish, spinach ...
- Percolating water collection
- Nutrient cycling (¹³C, ¹⁵N) investigation
- Mesofauna experiment

Problems resulting from EDTA washing

- Residual EDTA could increase the trace metal mobility/toxicity
- Alteration of physical and microbiological soil characteristics
- Extraction of nutrients

Need for rehabilitation

- Reestablishing soil fertility and the microbiota
- Improving the soil structure
- Increase water holding capacity
- Immobilize mobile trace metals

Soil amendments:

- Compost
- Biochar
- Inorganic (NPK, ZVI, etc.)

Conclusions from the pre-trials

- EDTA washing has the potential to decrease the concentration of trace metals in vegetables, meeting food security thresholds.
- Further reduction by cultivar selection for some vegetables.
- Soil amendments like vermicompost improve plant productivity.
- Biochar amendments led to increased water holding capacity.

Taking it to a bigger scale...

Raised Bed construction

- Raised bed constructed of birch wood.
- Implementing a drainage system to analyze leachates.
- 3 treatments (Original, Washed, Amended)
- 4 replicates = 12 beds

(Christoph Noller)

Homogenization, adding soil amendments

- The soil was homogenized and amended with biochar and vermicompost using a trommel sieve.
- 2.6 wt% vermicompost (worm compost from Vermigrand).
- 2.4 wt% biochar (Sonnenerde, wheat husks and cellulose fibers, 600°C).
- Each bed holds ca. 800 ± 50 kg of soil.

Finished beds

- The raised beds were equipped with a drip irrigation system.
- Soil water sensors and Tensiometers were installed to adjust the water content.

Experiment design

2019 August: Spinach September: Radish 2020: April: Carrots/Lettuce

Resent results from the raised bed experiment (Soil)

Soil Sample	Pb [mg kg ⁻¹]	Cd [mg kg ⁻¹]	
Total Content			
Contaminated	795 ± 18.0	4.47 ± 0.19	
Washed	189 ± 11.1	2.36 ± 0.07	
Amended	201 ± 2.45	2.14 ± 0.14	
Ammonium Nitrate Extractable			
Contaminated	3.54 ± 0.12	0.60 ± 0.02	
Washed	1.37 ± 0.02	0.22 ± 0.03	
Amended	0.90 ± 0.06	0.19 ± 0.02	

C ... ControlW ... Washed SoilA ... Washed and Amended Soil

Resent results from the raised bed experiment (Spinach)

Soil/Cultivar	Pb [mg kg ⁻¹]	Cd [mg kg ⁻¹]
C/Butterfly	33.5 ± 2.05	63.6 ± 11.7
C/Resistoflay	38.5 ± 3.12	68.1 ± 5.95
W/Butterfly	4.64 ± 3.85	19.6 ± 4.46
W/Resistoflay	7.34 ± 3.67	22.7 ± 0.78
A/Butterfly	1.29 ± 0.91	12.0 ± 2.15
A/Resistoflay	0.73 ± 0.44	11.3 ± 1.24

C ... ControlW ... Washed SoilA ... Washed and Amended Soil

Work in progress – PHD from Christoph Noller Additionally ...

Physicochemical analysis (Mathäus Steurer)

Nutrient cycling (¹³C, ¹⁵N) (Corinna Eichinger)

Mesofauna (Janet Wissuwa)

Thank you for your attention!

Wolfgang Friesl-Hanl University of Natural Resources and Life Science, Vienna Institue of Soil Research – Stable Isotope Group Konrad-Lorenz-Straße 24, A-3430 Tulln an der Donau Tel.: +4367762418790 wolfgang.friesl@boku.ac.at, www.boku.ac.at

University of Natural Resources and Life Sciences Vienna Department of Forest and Soil Sciences

University of Ljubljana

Master and PhD seminar 2019, Tulln