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Atmospheric Circulation Regimes

Atmospheric circulation regimes = Recurrent and persistent patterns

Concept: Weather is a
stochastic process with
statistics conditioned on
the circulation regime

Many regions (NH, SH,
Pacific Sector, ...) have
been studied for the
identification of
circulation regimes

Focus on the
Euro-Atlantic sector in
winter

Most studies identify
four regimes

Figure: The four regimes based on the 500 hPa
geopotential height (Cassou, 2008).
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Methods Standard Approach

Methods: Standard Approach
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Methods Standard Approach

Standard Approach

Starting from the 1990s many approaches have been taken to identify
circulation regimes. The most-common approaches are:

Data

500 hPa geopotential height
Project onto Empirical
Orthogonal Functions (EOFs)
Remove the seasonal cycle
Apply a (10-day) low-pass
filter to focus on persistent,
low-frequency behaviour

Question:

Does filtering data (EOFs or
time-filtering) before applying a
clustering method yield different
results than clustering raw data?

Methods

Analysis of the probability
density function
Hierarchical clustering
k-means clustering
⇒ This has become the
most-used approach
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Methods Standard Approach

Our Approach

Question:

Does filtering data (EOFs or time-filtering) before applying a
clustering method yield different results than clustering raw data?

To answer this question we use:

Data

ERA-Interim 500 hPa
geopotential height
Euro-Atlantic sector
(20-80◦N, 90◦W-30◦E)
Daily data for December till
March, 1979 - 2018
Deviations with respect to a
fixed background state

Method

k-means clustering

We compare regimes for

Full field (raw) data

EOF data (for 5 till 20 EOFs)

and enforce persistence of the
regimes by using either

Low-pass filtered data

A constraint in the clustering
algorithm
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Methods k-means Clustering

Methods: k-means Clustering

Swinda Falkena Circulation Regimes Revisited May 7, 2020 7 / 32



Methods k-means Clustering

k-means Clustering

First, fix the number of clusters k ,
here k = 3.

Then, follow this procedure:

1 Pick the initial k clusters,
coloured dots

2 Assign each data point (black)
to the closest cluster, within
coloured lines

3 Compute the average over the
data points assigned to each
cluster, coloured stars

4 Repeat until the clusters
converge
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Methods k-means Clustering

k-means Clustering: Mathematical Formulation

Formulated mathematically this means that, given a number of clusters k,
with

Dataset {xt}t≤T

Cluster parameters Θ = (θ1, ..., θk)

Model distance functional g(xt , θi ), giving the distance between a
data point xt and a cluster θi

Weights Γ = (γ1(t), ..., γk(t)), indicating to which cluster a data
point belongs (since in practice γi (t) is either zero or one)

k-means clustering minimizes the averaged clustering functional:

L(Θ, Γ) =

∫ T

0

k∑
i=1

γi (t)g(xt , θi )dt

Note: Inclusion of Γ is not required for k-means as described here, but is needed when a
persistence constraint is included in the algorithm later on.
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Optimal Number of Regimes Consistency of Clustering Method

Optimal Number of Regimes:
Consistency of the Clustering

Method
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Optimal Number of Regimes Consistency of Clustering Method

Optimal Number of Clusters

An important question when using k-means clustering is:
What is the optimal number of clusters k?

Mainly, studies look at how consistent the outcome of the clustering
algorithm is when run for different initial conditions:

Often-used is the classifiability index (Michelangeli et al., 1995)

Significance of the clusters is verified against synthetic datasets

We run the k-means clustering algorithm 500 times for different initial
conditions and look at:

The clustering functional L, the lower its value, the better the result
(the lowest value Lmin is selected as the ‘true’ clusters)

The data similarity with the ‘true’ cluster = the number of data
points assigned to the same clusters
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Optimal Number of Regimes Consistency of Clustering Method

Consistency of the Clustering Method: EOFs

Below are examples of the distributions of L and the data similarity for 500
tests for EOF data (20 EOFs)
⇒ We want a measure indicating how consistent, or similar, a result is
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Figure: The difference of the clustering functional L with the lowest value Lmin.
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Figure: The data similarity.
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Optimal Number of Regimes Consistency of Clustering Method

Consistency of the Clustering Method: EOFs vs Full Field

We look at the distribution of the data similarity for L close to the optimal
result (Li+1 − Li < ε, for Li ordered), i.e. if all results with small L also
have large data similarity the result is consistent:

A high mean indicates a good match

The variance (corrected for the number of clusters k) gives a measure
of how consistent the results are

Note that the values are expected to be smaller for higher k, as more
clusters allow for more variability.

Note: For definite conclusions statistical significance tests on these measures are needed.
When full field data is used these are difficult to establish.
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Optimal Number of Regimes Consistency of Clustering Method

Consistency of the Clustering Method: EOFs vs Full Field

We compare the results for EOF data with those for full field data to look
into the optimal number of regimes.

For EOF data k = 4 is found most consistent, which corresponds with
results from literature

For full field data k = 5 and k = 6 are found to be more consistent
than k = 4

20 EOFs Full field
k µ σ2/k #data µ σ2/k #data

3 4643 3649 254 4552 2109 485
4 4658 330 197 4607 1440 201
5 4509 978 265 4660 149 204
6 4571 1103 315 4581 790 316
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Optimal Number of Regimes Consistency of Clustering Method

Consistency of the Clustering Method: Odd and Even
Years

A method often-used to check the performance of the clustering algorithm
is to split the dataset in half. Therefore we look at the consistency of the
clusters when clustering the odd and even years separately.

Large differences between the odd and even years
Both odd and even years are quite consistent for k = 4
Is half the dataset of sufficient length to draw conclusions?

Odd years Even years
k µ σ2/k #data µ σ2/k #data

3 2342 875 409 2246 140 156
4 2359 452 248 2255 37 423
5 2187 3562 274 2243 132 137
6 2296 322 60 1911 10478 210

⇒ Can such a consistency argument be used to draw conclusions about
the optimal number of regimes if the results are not coherent?
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Optimal Number of Regimes Information Criteria

Optimal Number of Regimes:
Information Criteria
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Optimal Number of Regimes Information Criteria

Information Criteria

The consistency discussion did not yield coherent, conclusive, results.
More general, one can ask the question whether a large spread in the
clustering result disqualifies the suitability of the ‘true’ regimes? Therefore
we turn to a different method for identifying the optimal number of
regimes: Information Criteria.

Information criteria strike a balance between how well the clusters
represent the data and the number of clusters used. Here we discuss the
two most used criteria:

1 Akaike Information Criterion: AIC = −2 log(L(θ̂|data)) + 2K

2 Bayesian Information Criterion: BIC = −2 log(L(θ̂|data)) + K log(n)

where L(θ̂|data) is the likelihood of the optimal clusters θ̂ given the data,
K the number of parameters needed to describe all clusters and n the
sample size.
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Optimal Number of Regimes Information Criteria

Information Criteria

The optimal number of clusters is found where the information criteria has
its minimum.

AIC = −2 log(L(θ̂|data)) + 2K

BIC = −2 log(L(θ̂|data)) + K log(n)

The first term in both criteria is the same and gives how well the clusters
represent the data. The difference arises in the second term, often called
the penalty term, which penalizes the use of many parameters to prevent
over-fitting:

The BIC is better suited for the full field data since the penalty term
takes into account the sample size and therefore is stronger with
respect to the number of parameters.

The AIC is better suited for the EOF data since the penalty term of
the BIC likely is too strong.
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Optimal Number of Regimes Information Criteria

Information Criteria for Regimes

EOF Data

2 3 4 5 6 7 8 9 10
k

−1

0

1

2

3

4

5

AI
C

1e4

Nr EOFs
5
10
15
20

Figure: The AIC for different numbers of
EOFs.

For 20 EOFs k = 4 is found to
be optimal using the AIC

Full Field Data
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Figure: The AIC and BIC for the full
field data.

k = 6 is found to be optimal
using the BIC

Note: Changes in the AIC with the number of EOFs are due to more variability
being neglected when less EOFs are used.
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Optimal Number of Regimes Six Regimes

Optimal Number of Regimes: Six
Regimes
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Optimal Number of Regimes Six Regimes

Six Circulation Regimes

What are the
regimes for k = 6?

The same as for
k = 4 (NAO+,
NAO-, Atlantic
Ridge (AR),
Scandinavian
Blocking (SB))

A low pressure
area over the
Atlantic (AR-)

A low pressure
area over
Scandinavia
(SB-)

AR+ SB+

NAO+ NAO-

AR- SB-
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Optimal Number of Regimes Six Regimes

Occurrence and Persistence

What are the occurrence rates and transition probabilities of a regime to
itself (indicating its persistence)?

AR+ SB+ NAO+ NAO- AR- SB-
k = 4 Occurrence 21.3 26.8 31.5 20.4

Self-Trans. P. 0.756 0.792 0.850 0.849
k = 6 Occurrence 15.6 19.6 16.9 15.5 16.3 16.1

Self-Trans. P. 0.712 0.748 0.751 0.847 0.787 0.730

Differences of the k = 6 regimes with k = 4:

Two additional regimes identified by Northern low pressure

This explains the strong drop in occurrence of the NAO+ with respect
to k = 4

The NAO- remains as persistent as for k = 4, despite its drop in
occurrence
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Persistent Regimes

Persistent Regimes
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Persistent Regimes

Drawbacks of k-means Clustering

k-means clustering has drawbacks that affect the occurrence rates and
transition probabilities of the regimes:

Every data point is assigned to a cluster, even if its distance to
different clusters is comparable

Time is not taken into account, the data can be reshuffled randomly
and the same clusters are found

If a data point lies in between two clusters,
to which one do you assign it?

To the cluster it is (just) closest to?

To the cluster of its neighbours even
though it is (slightly) further away? 0 5 10 15 20

-1.0

-0.5

0.0

0.5

1.0

Time

The standard approach to focus on persistent behaviour of the circulation
is to apply a low-pass filter, here we use a new approach which includes a
persistence constraint in the clustering algorithm.
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Persistent Regimes Including a Constraint in k-means

Persistent Regimes: Including a
Constraint in k-means
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Persistent Regimes Including a Constraint in k-means

Including a Persistence Constraint in k-means

Recall the clustering functional

L(Θ, Γ) =

∫ T

0

k∑
i=1

γi (t)g(xt , θi )dt.

To enforce persistence of the clusters we put a constraint
on the weights Γ

k∑
i=1

T−1∑
t=0

|γi (t + 1)− γi (t)| ≤ C .

This restricts the number of transitions between clusters
that are allowed.

Minimization of L(Θ, Γ) is done in two (iterated) steps:

1 Given Θ, minimize L for Γ ⇒ Linear programming

2 Given Γ, minimize L for Θ ⇒ k-means clustering

Each C has a
corresponding
average regime
duration:

C Days
600 15.8
800 11.8

1000 9.5
1200 7.9
1400 6.8
1600 5.9
1800 5.3
2000 4.7
2200 4.3
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Persistent Regimes Including a Constraint in k-means

Example of the Effect of a Persistence Constraint

Consider a simple 2D example
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with transitions determined by
a transition matrix.

Orange: wrongly assigned
by standard k-means

Red: still wrongly assigned
with a constraint

Points on the boundary between
clusters switch with the incorporation of
the constraint

Short back-and-forth transitions in the
clustering result are reduced

Closer to the ‘true’ persistence

1000 1025 1050 1075 1100 1125 1150 1175 1200
Time

0.00

0.25

0.50

0.75

1.00

1.25

1.50

1.75

2.00

Cl
us

te
r N

r.

Truth
Standard
Persistent

Figure: The transition sequence between clusters.
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Persistent Regimes Including a Constraint in k-means

Effect on Persistence and Occurrence

To see what the effect is of the persistence constraint on the occurrence
and self-transition probabilities we run the algorithm for different values of
C . The results are shown on the next slide, together with the results for
applying a 5- or 10-day low-pass filter to the data (LP5, LP10) and the
unconstrained algorithm (Field).

The persistence constraint starts to affect the persistence for C below
either 1800 (k = 4) or 2200 (k = 6), from then the increase in
self-transition probability is approximately linear with C for all regimes

The occurrence rate does not change until C becomes very small,
corresponding to unrealistically large average regime durations (over 9
days for k = 4 and over 8 days for k = 6)

Applying a low-pass filter does affect the occurrence rates of the
regimes and thus introduces a possible bias in the found regimes

A realistic range of C is indicated by the gray bands in the figures on the
next slide.
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Persistent Regimes Including a Constraint in k-means

Effect on Persistence and Occurrence
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Persistent Regimes Including a Constraint in k-means

Optimal Constraint Value

The final question to discuss is: What is the optimal constraint value C?

There are two possible ways to determine this:

Information criterion (BIC)

Look for which C the occurrence rates start to be affected

Both point to an optimal C of approximately 1400− 1500, corresponding
to an average regime duration of 6-7 days.

We find

Persistence beyond the synoptic
timescale

The optimal regime duration
differs less for different k, than
for the unconstrained results

The constraint helps to identify
the physical signal 500 1000 1500 2000 2500 3000
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Conclusion and Discussion
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Conclusion and Discussion

Conclusion and Discussion

Using full field data, six circulation regimes is found to be optimal

This introduces a symmetry in the clusters
Four regimes is the standard in literature (using EOFs)

Including a persistence constraint in the clustering method increases
the persistence without changing the occurrence of the regimes

“In between” data points are forced towards the cluster of their
neighbours
Time-filtering does affect the occurrence

The persistence constraint helps to identify the physical signal of
the persistent regimes. More generally, care needs to be taken with
filtering data before applying a clustering method.

Falkena, S.K.J., de Wiljes, J., Weisheimer, A., Shepherd, T.G., Revisiting the
Identification of Wintertime Atmospheric Circulation Regimes in the Euro-Atlantic
Sector, ArXiv: 1912.10838, 2019 (in revision for QJRMS).
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