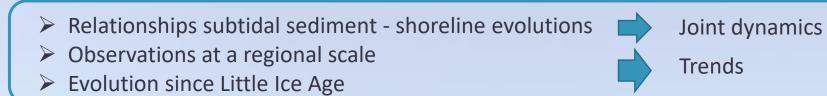


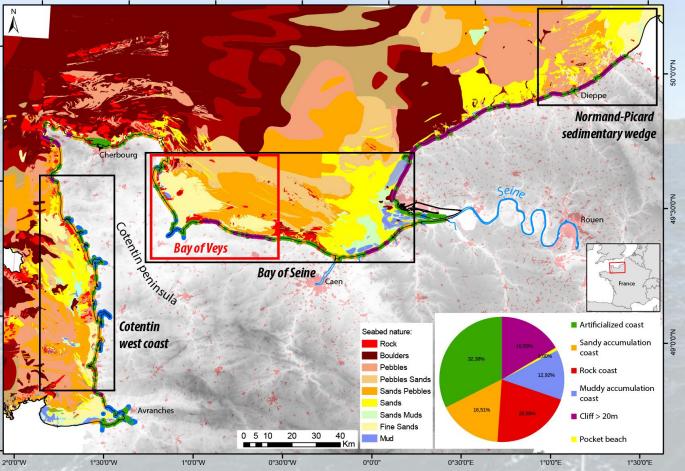
Secular evolution of sandy coasts of Normandy (NW France)

Elise Grenard-Grand ^{1*}, Bernadette Tessier ¹, Sophie Le Bot ², Justine Ponsolle²

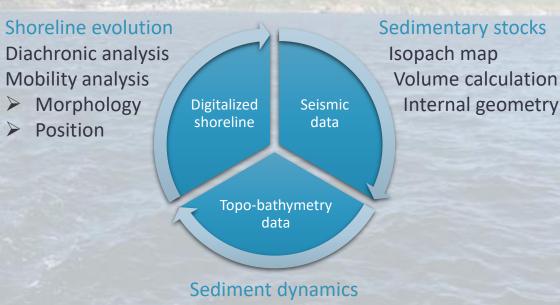
¹ Morphodynamique Continentale et Côtière, Normandie University, CNRS, Caen 14000, France ² Morphodynamique Continentale et Côtière, Normandie University, CNRS, Rouen 76000, France *: <u>elise.grenard-grand@unicaen.fr</u>

FGU2020 Sharing Geoscience Online





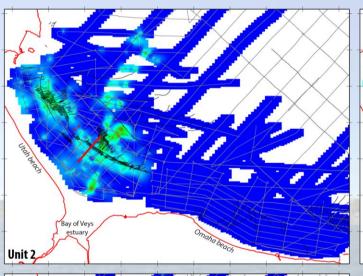
This study focus on recent and mobile 'offshore' sediments, potentially available for shoreface and foreshore supply.

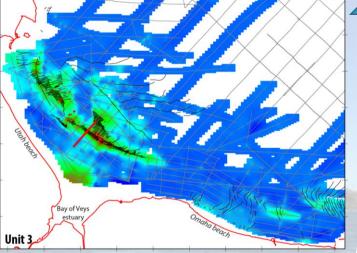

An innovative approach

G maps compilation (scales : 1/150 000 et 1/50 000), Shom.

Problematic & context

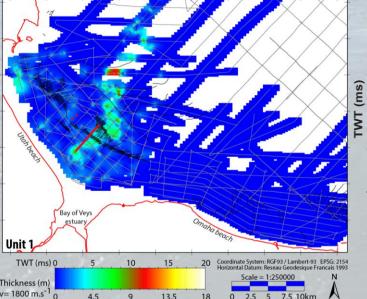
Study area: Normandy coasts with 3 main targets (black areas) selected on the basis of shoreline type and seabed nature. The presentation focus on the **Bay of Veys** (red area) including the D-Day landing beaches of Utah and Omaha.

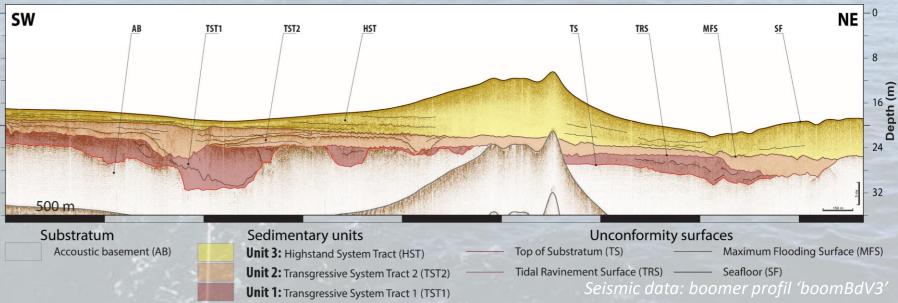

Identification of hydro-sedimentary bedforms Sediment mobility: directions, distances, volumes


CC ()

Sedimentary stocks

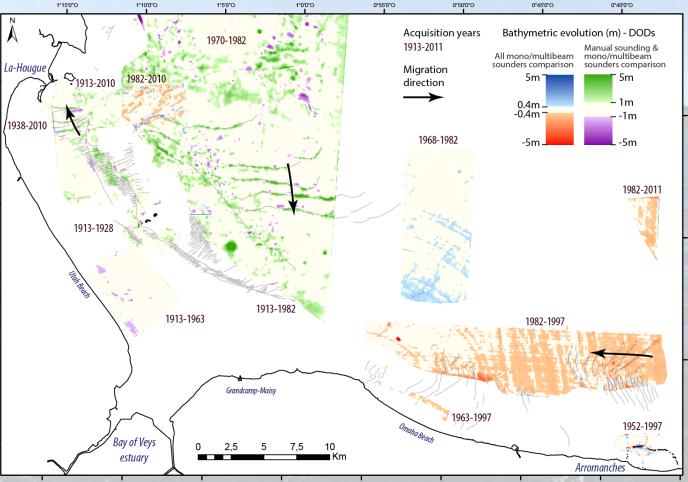
Defined by USU 'upper sand units', limited at their base by hard floor (bedrock) and accumulated under high sea level conditions (Certain *et al.,* 2005).


In the Bay of Veys, according to seismic data, the sediment cover over the bedrock comprises 3 units related to the sediment infill of incised valleys and coastal wedge construction during the Holocene transgression (Tessier *et al.*, 2010 ; Tessier *et al.*, 2012).



Unit 3: HST: subtidal banks and dunes + costal wedge construction
Maximum Flooding Surface (3000/2000 cal yr BP)
Unit 2: TST 2: estuary infilling + bank initiation
Tidal Ravinement surface : (6000 cal yr BP)
Unit 1: TST1: paleo-valley infilling
Top of the bedrock (lower Jurassic)

Isopach maps – interpolation 'gradient projection' with Kingdom Suite


\odot \odot

Sediment dynamics

Analysis of historical evolution of sediment volumes and bedforms migration: regional pattern of sediment dynamics over the last centuries.

20m grid DODs created from punctual bathymetric data from Nautical Charts (Shom). Acquisition: from 1913 to 2011. Limitations: limited spatial and time overlay → analysis restricted to some areas.

Bathymetric differential (DODs)– DEM cells 20m

Margin of error in vertical precision depends on acquisition type:

- ➤ Manual depth sounding ≈ 1m
- Mono/multibeam acoustic sounders ≈ 0.3 m Calculation of the most probable margin of error (Brasington *et al.*, 2003): $\delta U = \sqrt{\delta Z_{t1}^2 + \delta Z_{t2}^2}$

Three main observations types:

- Erosion trend
 - Exposed coastal linear
 - Around wrecks and islands
- Accretion trend
 - Sand dune formation
 - Central sand bank
 - Around wrecks
- Sand dunes migration velocity
 - La Hougue: ≈ 2 to 2,5 m/yr (northward)
 - Center of the bay: ≈ 2 to 3 m/yr (southward)
 - Arromanches: ≈ 5 to 5,5 m/yr (westward)
 - \rightarrow Conform to residual tidal currents

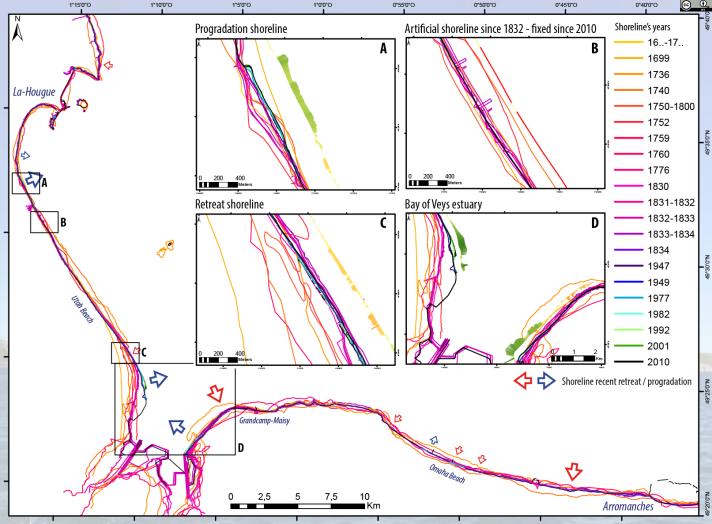
Shoreline evolution

Shoreline observations

Recent shoreline: 1947 to actual

- By ROL & Cerema & DREAL
- From orthophotographies
- Reliable trends since 1947

Historic shoreline: from XVII century to 1949


 Shoreline positions digitized from cartographic records (Cassini, '*Etat Major'*, Nautical Chart, various maps...)

Margins of error: multi-parameter

- Georeferencing: variable
- ➢ Historic mapping error ≈ 100 to 200m
- Choice of coastline indicator/marker
- ➢ Shoreline digitization ≈ 10 to 20m

Qualitative observations

Confirm/refute recent trend
 Sustainable progradation (A) & (D)
 Old artificialisation: link to retreat? (B)
 Historic progradation and recent retreat (C)

gitalized shoreline available in targeted areas, with histograms (green: progradation, red: retreat) produced by the ROL from orthophotography's shorelines (1947 to 2010)

• Evolution of coastal features

Sandspits punctual existence 1750 to 1800 (C) Estuary anthropogenic modification and natural infilling (D)

Quantitative approach

Impossible, due to important and indefinable (multiparameter) margin of error

Conclusion & perspectives

This work allows

- Reconstructing the long term (Holocene) sedimentary evolution of the Bay of Veys: with 3 main steps early and late transgression (estuarine infillings), high stand sea level context (final coastal wedge construction, subtidal sediment cover and bank build-up
- Quantifying the volume of subtidal sediment cover and its historical mobility, as well as the shoreline position

Next steps

- Extension of the study at the scale of the whole Normandy coastal domain (with acquisition of new seismic data)
- Quantification of the thicknesses and volumes of mobile sediment
- Calculation of sedimentary fluxes

Good coherence of evolution between subtidal domain and adjacent shorelines

- Protected coastline: sediment gain
- Exposed coastline: sediment loss

Ð

LOCA

Paleo-valle

Subtidal erosion / accretion

Migration direction

Substratum

Transgressive System Tract

Holocene drapes sedimentary cover (<1 m)

Holocene sedimentary relief (thickness > 1 m)

Bibliography

- Brasington, J., Langham, J., Rumsby, B. (2003). Methodological sensitivity of morphometric estimates of coarse fluvial sediment transport. *Geomorphology* 53 (3-4), 299-316.
- Certain, R., Tessier, B., Barusseau, J.-P., Courp, T., Hauc, H. (2005). Sedimentary balance and sand stock availability along a littoral system. The case of the western Gulf of Lions littoral prism (France) investigated by very high resolution seismic. *Marine and Petroleum Geology* 22, 889–900
- Tessier, B., Billeaud, I., Lesueur, P. (2010). Stratigraphic organisation of a composite macrotidal wedge: the Holocene sedimentary infilling of the Mont-Saint-Michel Bay (NW France). Bull. Soc. Geol. Fr. 181 (2), 99–113
- Tessier, B., Billeaud, I., Sorrel, P., Delsinne, N., and Lesueur, P. (2012). Infilling stratigraphy of macrotidal tide-dominated estuaries.
 Controlling mechanisms: Sea-level fluctuations, bedrock morphology, sediment supply and climate changes (The examples of the Seine estuary and the Mont-Saint-Michel Bay, English Channel, NW France). Sedimentary Geology 279, 62–73