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Methods
According to the reciprocity theorem, the energy focuses at the 

source location and the origin time if the seismic record is back-

propagated in the correct model. So energy focusing can be 

served as the criterion of an optimized velocity model. The 

objective function (Jin & Plessix 2013) to be minimized with a 

negative sign is:
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where 𝑃𝑏 𝐱, 𝑡 stands for the back-propagated wave-field, ෥𝑡0 and 

𝑡𝑚𝑎𝑥 define the time window. The weighting function 𝑤(𝐱, 𝑡)
defines a tapered volume. 

The derivative of 𝑬 with respect to velocity can be expressed 

as:

Introduction
With the improvement of computing capacity, full waveform 

inversion (FWI), which exploits information of the full wave-

field, becomes one of the most attractive geophysical inversion 

methods for not only exploration geophysics (Virieux & Operto

2009) but also global seismology (Fichtner et al. 2013). Despite 

its high resolution and successful practical applications, there 

still exist several obstacles to the successful application of FWI 

for passive earthquake sources, such as the high non-linearity for 

model convergence and demand for accurate source information.

We propose a new method called Waveform Energy Focusing 

Tomography (WEFT) for passive earthquake events, which back-

propagates the seismic record from the receivers, not the data 

residuals like in conventional FWI, and tries to maximize the 

back-propagated wave-field energy around the source location 

over a short period around the origin time. The least-squares 

moment tensor migration approach is used to reconstruct the 

passive sources, and the Hessian matrix is approximated using 

either analytic expression or raytracing, which improve the 

accuracy of reconstructed source. Since waveform fitting is 

superseded by simpler energy maximization, the nonlinearity of 

WEFT is weaker than that of FWI, and even less-accurate initial 

velocity model can be used. 

𝜕𝑬

𝜕c(𝐱)
=

1

𝑐3 𝐱
෍

𝑠=1

𝑛𝑠

න

𝑡0

𝑡𝑚𝑎𝑥

𝑤 𝐱, 𝑡 ሷ𝑃𝑓(𝐱, 𝑡; 𝐱𝑠)𝑃𝑏(𝐱, 𝑡; 𝐱𝑠) 𝑑𝑡

where ሷ𝑃𝑓(𝐱, 𝑡; 𝐱𝑠) indicates the second-order time-derivative of the 

forward-propagated wave-field and 𝑃𝑏(𝐱, 𝑡; 𝐱𝑠) indicates the back-

propagated wave-field. A quadratic line-search method (Nocedal

& Wright 1999) is applied to find a step length to update model.

The moment tensor can be obtained approximately by time-

reversal operation (Kawakatsu & Montagner, 2008):
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where 𝐸𝑖𝑗𝑛 is the strain Green’s tensor (Zhao et al. 2006).

To give a better estimation of the moment tensor, we use the 

least squares solution:
𝑀𝑖𝑗(𝑡) = (𝐺∗𝐺)−1 ෡𝑀𝑖𝑗(𝑡)

where inverse Hessian (𝐺∗𝐺)−1 can be approximated using 

analytical expressions. In a homogeneous medium, the Green’s 

functions for P-wave in the far field is (Aki & Richards, 1980):
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where 𝑟 = 𝐱 − 𝛏 is the distance between a receiver and a source, 

and γ𝑖 = (𝑥𝑖 − 𝜉𝑖)/𝑟 is the direction cosine. In a heterogeneous 

medium, we use ray-tracing to better estimate 𝛾𝑖. It should be 

emphasized that only the Green’s functions in the inverse Hessian 

are approximated using analytical expressions and ray-tracing. 

Numerical Examples
To avoid the large amount of computation, we show synthetic 

tests in 2D to illustrate the validity of WEFT. Considering that the 

analytic derivatives of the Green’s functions in 2D is too 

complicated, we decide to reconstruct the source in 3D by 

transforming data from 2D to 3D. The finite-difference method is 

used to simulate the propagation of the wave-field according to 

the acoustic wave equation. 

We show the comparison of the reconstructed source 

components in Fig. 1. After the application of least-squares term, 

we can find both the amplitudes and the polarity of the 

reconstructed moment tensor become quite consistent with the 

true values in all components. The gradient comparison between

WEFT and conventional FWI with a moment tensor source which 

has polarity reversal is shown in Fig. 2. Although the gradients of 

WEFT are slightly different from those of FWI, overall they are 

similar.

Figure 2. The comparison of stacking gradients between WEFT (middle) and FWI (right). The yellow 

asterisks at the bottom denote the sources, and the black triangles at the top denote the 201 receivers 

with 20m spacing. The radiation pattern of the source is shown on the left.

In Fig. 3, we then show an example of velocity inversion using 

WEFT. There are six groups of earthquakes with different

moment tensors (left) are used to generate the observed data. 

Though it is challenging for passive source waveform 

tomography, the inverted model compares favourably with the 

true model (third row on the right). The synthetic test illustrates 

the universality of WEFT for sources with various radiation 

patterns.

Figure 3. Marmousi model velocity inversion using earthquakes with 6 kinds of source radiation 

patterns (left). The initial velocity model is shown in the first row on the right, and the true model and 

final inverted velocity model is shown in the second and third row, respectively. The earthquakes 

indicated by stars with different colors are of different moment tensors.

Conclusions
We propose a new method called waveform energy focusing 

tomography for passive earthquake events. Both the source time 

function and the moment tensor are not required before 

inversion. By incorporating ray-theoretical Green’s function into 

the analytic expression of the Hessian matrix, the least-squares 

weighted moment tensor migration inversion is used for the 

source reconstruction during the WEFT, which improves the 

accuracy of the reconstructed source. Since WEFT concerns 

about energy focusing rather than waveform fitting, it has lower 

non-linearity and is less dependent on both the initial model and 

source accuracy. These advantages of WEFT make it more 

practical for challenging earthquake data, especially for local 

small magnitude earthquakes where both velocity model and 

earthquake source information are unknown. 

Figure 1. The reconstructed source components of the double-couple source. The black lines are true 

source components. The gray dash lines indicate the reconstructed source components using time-

reversal moment tensor imaging. The blue lines and red lines indicate the reconstructed source 

components using LS weighted moment tensor migration inversion based on the analytic method and ray 

tracing, respectively. The amplitudes are scaled by the actual value of 𝑀𝑥𝑥.
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