3D structure beneath Iranian plateau and Zagros using adjoint tomography

Abolfazl Komeazi, 1,2 $\,$ F. Yaminifard 2 $\,$ A.Kaviani 1 $\,$ G.Rumpker 1 M.Tatar 2 $\,$ Q.Liu 3 $\,$ K.Wang 3

¹Goethe university, Geosciences, Geophysics, Germany

²International Institute of Earthquake Engineering and Seismology, Iran

³Department of Earth Sciences, University of Toronto, Canada

May 8, 2020

Introduction

In this study, we are going to show the results from adjoint noise tomography beneath Iranian plateau and Zagros. Continental collision along the Zagros suture resulted from the long- lasting convergence of the Arabian plate toward Eurasia (Fig. 1), and has provided the essential force raising the Zagros Mountains and uplifting the Iranian plateau.

Figure 1: study area: Iraninan plateau and Zagros, the Zagros features 1 MZF and UDMA are shown by name)

Data and stations

In this study we use the events with mag of 4.5-6.8 and also the CC of the stations in Fig.2. In Fig.3 the ray paths of the events are depicted.

Figure 2: Broad band stations of IIEES and IRSC

Figure 3: Events with magnitude of 4.5-6.8

Velocity models

As the initial velocity model we are going to start with S-velocity model (A.Kaviani et al, 2019) for the noise tomography (Fig.4) and then we will use the resulted model as an initial model for the EQ tomography.

Figure 4: Examples of group-velocity maps obtained using only two-station dispersion curves obtained from Ambient-noise cross-correlation.(A.Kaviani et al 2019)

Forward simulations- SEM

Here we can see some forward results via SPECFEM3D program for 2 EQs, FIN (above) and Qeshm (below) which have accured at 2016-02-28 and 2005-11-27 in southern part of Iran, respectively.

Figure 5: Real waves vs Synthetic waves

Inversion

For setting the parameters we designed a test checkerboard model (Fig.6, left) and start with a uniform model (vp:5500), here is the result with 50 randomly ditributed events and 81 stations on surface, after 6 iterations (Fig.6, right)

Figure 6: True and resolved velocity models

References

- Menke William, A Review of Adjoint Methods for Computing Derivatives Used in Wave Field Inversion, 2016, lecture notes
- Liu, Q. and Gu, Y.J., 2012. Seismic imaging: From classical to adjoint tomography. Tectonophysics, 566, pp.31-66.
- Virieux, J. and Operto, S., 2009. An overview of full-waveform inversion in exploration geophysics. Geophysics, 74(6), pp.WCC1-WCC26.
- Liu, Q. and Tromp, J., 2006. Finite-frequency kernels based on adjoint methods. Bulletin of the Seismological Society of America, 96(6), pp.2383-2397.
- Tromp, J., Komatitsch, D. and Liu, Q., 2008. Spectral-element and adjoint methods in seismology. Communications in Computational Physics, 3(1), pp.1-32.
- Kaviani, A., Paul, A., Moradi, A., Mai, P. M., Pilia, S., Boschi, L., âĂę Sandvol, E. (2020). Crustal and uppermost mantle shear wave velocity structure beneath the Middle East from surface wave tomography. Geophysical Journal International, 221(2), 1349-1365.