EGU2020 Scaling of magnetic reconnection with a limited x-line extent

Kai Huang^{1,2*}, Yi-Hsin Liu², Quanming Lu¹, Michael Hesse³

¹University of Science and Technology of China

*Email: inhk@mail.ustc.edu.cn

²Dartmouth College ³University of Bergen

Motivation

- Previous studies of magnetic reconnection, x-line is infinitely long:
- 1. 2D
- 2. 3D with periodic boundary condition in the x-line direction
- Question:
- How does reconnection work with a finite x-line extent?
- In this work:
- Study magnetic reconnection with a limited x-line extent, model the reconnection rate and outflow speed as a function of the x-line extent.

Motivation

 Observations indicate that reconnection with a finite x-line extent is a universal phenomenon:

- 1. Planets/moons with small magnetotail, like Mercury, Ganymede...Spatial scale of Mercury magnetotail in Dawn-dusk direction: 20–50d_i
- Dipolarizing flux bundles(DFBs), Bursty bulk flows(BBFs) in Earth magnetotail. The minimum extent of DFBs in dawn-dusk direction: 0.5R_E~10d_i

Slavin et al. 2009

Liu et al. 2015

Simulation setup

- GSM coordinate
- Initial condition: Harris sheet with varies thickness along the y direction

 $\mathbf{B}(y,z) = B_0 \tanh[z/L(y)]\mathbf{e}_x$ $n(y,z) = n_0 \operatorname{sech}^2[z/L(y)] + n_b$ $L(y) = L_{\min} + (L_{\max} - L_{\min})[1 - f(y)]$

• Length of the x-line $L_{y,thin}$

 $n_b = 0.3n_0, \ L_{min} = 0.5d_i, \ L_{max} = 4d_i$ $m_i = 25m_e, \ c = 20V_A$ $L_x \times L_y \times L_z = 32d_i \times 64d_i \times 32d_i$

Liu et al. 2019

Internal x-line asymmetry

Huang et al. 2020

• Reason: dawnward transport of magnetic flux B_z by electron.(Liu et al. 2019)

Define the active region

- Define the active region: $\delta < 2d_{e,l}$
- Active region coincide with the region with large E_y (reach 0.1).
- Length of the active region: *L*_{act}
- Length of the suppression region: L_{supp}
- $L_{y,thin} = L_{act} + L_{supp}$
- $L_{supp} \sim 10d_i$ (Liu et al. 2019)

Results of cases with different x-line extent

- Average reconnection rate R (panel a):
 - $R = \frac{\partial_t \Psi}{L_{y,thin}}$
- *L_{y,thin}* decrease, both reconnection rate and outflow speed decrease
- $L_{y,thin} \leq 10d_i$, reconnection is suppressed:
- 1. Both reconnection rate and outflow speed taper off (see panel a, b)
- 2. No active region (see panel c)
- 3. No current sheet thinning (see panel d)

Model the reconnection rate

- Reconnection rate normalized by *L*_{act}:
 - $R^* = \frac{\partial_t \Psi}{L_{act}} = \frac{L_{y,thin}}{L_{act}} R$
- R* is similar in all cases with an active region (see panel e), and reach ~0.1, the typical 2D reconnection rate.
- Estimate the average reconnection rate R:

 $R = \frac{L_{act}}{L_{y,thin}} R^* = \left(1 - \frac{L_{supp}}{L_{y,thin}}\right) R^*$

• Assume R* and L_{supp} are constant, the reason for the decrease of R is the limited length of the active region when x-line is shorter.

Huang et al. 2020

Model the outflow speed

• Estimate the outflow speed in 2D condition: $V_x^2 \propto J_y B_z$

• J_y and B_z are similar in three cases (see panel b), while $J_y B_z$ decreases (see panel a).

• The reason for the decrease of $J_y B_z$ is the dawnward transport of B_z , transport distance is L_{supp} , the gray region in panel b.

Model the outflow speed

- $J_y = J_{ymax}f(y)$
- $B_z = B_{zmax}f(y + L_{supp})$
- 1. Panel (a), x-line is long: $(J_y B_z)_{max} = J_{y max} B_{z max}$
- 2. Panel (b), x-line is short: $\left(J_{y}B_{z}\right)_{\max} = J_{y\max}B_{z\max}\left(\frac{L_{act}}{2L_{trunc}}\right)^{2}$

$$V_{x,\max} \propto \sqrt{\left(J_{y}B_{z}\right)_{\max}} \Longrightarrow V_{x,\max} = \begin{cases} V_{m} \sim V_{A}, & L_{act} \geq 2L_{trans} \\ \frac{L_{act}}{2L_{trans}}V_{m}, L_{act} < 2L_{trans} \end{cases}$$

Model & data comparison

- Panel a: length of the suppression region $L_{supp} = L_{y,thin} - L_{act} \approx 5 \sim 10d_i$
- Panel b: reconnection rate

$$R = \frac{L_{act}}{L_{y,thin}} R^* = \left(1 - \frac{L_{supp}}{L_{y,thin}}\right) R^*$$

 $R^* = 0.15$

• Panel c: reconnection outflow speed

$$V_{x,\max} = \begin{cases} V_m \sim V_A, & L_{act} \geq 2L_{trans} \\ \frac{L_{act}}{2L_{trans}} V_m, L_{act} < 2L_{trans} \end{cases}$$
$$V_m = 0.75V_A$$
$$L_{trans} = 4d_i$$

Huang et al. 2020

Summary

• We conduct 3D PIC simulations of reconnection with a limited x-line extent. Reconnection is suppressed on the ion drifting (dusk) side, $L_{supp} \sim 10d_i$.

 We propose a model of reconnection rate and reconnection outflow speed as a function of the x-line extent, and explain the mechanisms that reduce the reconnection rate and outflow speed when x-line is short.

• This study is applicable to planets with magnetotail similar to Mercury' s size and reconnection with limited X line extent in Earth magnetotail.

