# **Consistency of observed sea surface height changes, bottom pressure** changes and temperature, salinity variations in a South Atlantic transect of the Antarctic Circumpolar Current

Alisa Yakhontova<sup>1)</sup>, Roelof Rietbroek<sup>1)</sup>, Jens Schröter<sup>2)</sup>, Nadja Jonas<sup>1)</sup>, Christina Lück<sup>1)</sup>, Bernd **Uebbing**<sup>1)</sup> <sup>1)</sup>University of Bonn, Bonn Germany, <sup>2)</sup>Alfred Wegener Institute, Bremerhaven, Germany



South Atlantic Experiment, Yakhontova et al., 2020



# Before: Joint Fingerprint Inversion - Estimate Sea Level Budget Components with Satellite **Observations (Rietbroek et al., 2016)**

Idea:

**Results**:

- estimate: steric and mass induced sea level changes, and changes in superimposed signals (ice covers, GIA, hydrology)
- use: GRACE and Radar Altimetry data
- method: determine the magnitude of each signal with spatial fingerprints



• global sea level budget - closed • regional sea level budget - "closed" with larger uncertainties



# Now: Advanced Joint Inversion - Additionally Coestimate 4D Temperature and Salinity Profiles (Rocstar Project)

Idea:

- estimate: changes in the geoid, dynamic SSH, atmospheric surface pressure anomaly, and discretized T,S profiles
- use: GRACE, Radar Altimetry and ARGO data
- method: constrain mass and geometry of the entire ocean column



Expectations:

- increase the accuracy and consistency of 4D T,S fields
- better understand the sparsely sampled areas
- (deep ocean, shallow ocean)
- link to the terrestrial water cycle
- close regional sea level budget and provide realistic error estimates (focus SE-Asia)

identify ocean heat hotspots and study their



# Infrastructure

 manage data with PostGreSQL+PostGIS database (<u>'geoslurp' on github</u>)



- process data using jupyter-hub and jupyter notebooks
- follow the progress and learn more about the ROCSTAR on project website



# ROCSTAR





# Test Joint Inversion in South Atlantic through Comparison with In-Situ OBP Measurements

• estimate T, S, SSH, OBP at OBP-sites

Info sheet: OBP in-situ measurements (AWI)

- when: monthly mean in 2011-2014
- where: in the South Atlantic transect of the Antarctic Circumpolar Current
- where exactly: at the intersections of Jason-2 accending and descending tracks
- number of sites: 14







# Test Joint Inversion in South Atlantic through Comparison with In-Situ OBP Measurements

• estimate T, S, SSH, OBP at OBP-sites

Questions to be answered:

- Are the T,S estimates realistic and comparable to models (FESOM) in terms of variability?
- Do we improve the fit of measured OBP wrt direct-GRACE estimates?
- Do we reproduce observed sound travel times (linked to the density of the ocean column)?

OM) in terms of variability? mates?



# First Steps: Estimate Temperature Profiles at OBP-sites using Least Squares Collocation and FESOM Outputs

- 1. define depth levels the Least Squares Collocation based on the thermocline
- 2. select suitable ARGO observations and determine their covariance
- 3. estimate temperature profiles at OBP-sites with Least Squares Collocation (Moritz, 1972)



# *Vertical Discretization: Where does the temperature change most?*

Define depth levels for the Least Squares Adjustment based on the thermocline

- compute gradient of the temperature profile
- define maximum of the temperature gradient as the bottom of the mix layer
- below that choose sparser discretization

First guess: FESOM depth levels

| [46]: | 1<br>2    | p                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|-------|-----------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|       | depth [m] | 10.<br>20.<br>30.<br>40.<br>50.<br>60.<br>70.<br>80.<br>90.<br>115.<br>135.<br>160.<br>135.<br>280.<br>340.<br>410.<br>280.<br>340.<br>410.<br>580.<br>680.<br>790.<br>910.<br>1040.<br>1180.<br>1180.<br>1180.<br>1180.<br>1180.<br>1180.<br>1180.<br>1180.<br>1180.<br>1180.<br>1180.<br>1180.<br>1180.<br>1180.<br>1180.<br>1180.<br>1180.<br>1180.<br>1180.<br>1180.<br>1180.<br>1180.<br>1180.<br>1180.<br>1180.<br>1180.<br>1180.<br>1180.<br>1180.<br>1180.<br>1180.<br>1180.<br>1180.<br>1180.<br>1180.<br>1180.<br>1180.<br>1180.<br>1180.<br>1180.<br>1180.<br>1180.<br>1180.<br>1180.<br>1180.<br>1180.<br>1180.<br>1180.<br>1180.<br>1180.<br>1180.<br>1180.<br>1180.<br>1180.<br>1180.<br>1180.<br>1180.<br>1180.<br>1180.<br>1180.<br>1180.<br>1180.<br>1180.<br>1180.<br>1180.<br>1180.<br>1180.<br>1180.<br>1180.<br>1180.<br>1180.<br>1180.<br>1180.<br>1180.<br>1180.<br>1180.<br>1180.<br>1180.<br>1180.<br>1180.<br>1180.<br>1180.<br>1180.<br>1180.<br>1180.<br>1180.<br>1180.<br>1180.<br>1180.<br>1180.<br>1180.<br>1180.<br>1180.<br>1180.<br>1180.<br>1180.<br>1180.<br>1180.<br>1180.<br>1180.<br>1180.<br>1180.<br>1180.<br>1180.<br>1180.<br>1180.<br>1180.<br>1180.<br>1180.<br>1180.<br>1180.<br>1180.<br>1180.<br>1180.<br>1180.<br>1180.<br>1180.<br>1180.<br>1180.<br>1180.<br>1180.<br>1180.<br>1180.<br>1180.<br>1180.<br>1180.<br>1180.<br>1180.<br>1180.<br>1180.<br>1180.<br>1180.<br>1180.<br>1180.<br>1180.<br>1180.<br>1180.<br>1180.<br>1180.<br>1180.<br>1180.<br>1180.<br>1180.<br>1180.<br>1180.<br>1180.<br>1180.<br>1180.<br>1180.<br>1180.<br>1180.<br>1180.<br>1180.<br>1180.<br>1180.<br>1180.<br>1180.<br>1180.<br>1180.<br>1180.<br>1180.<br>1180.<br>1180.<br>1180.<br>1180.<br>1180.<br>1180.<br>1180.<br>1180.<br>1180.<br>1180.<br>1180.<br>1180.<br>1180.<br>1180.<br>1180.<br>1180.<br>1180.<br>1180.<br>1180.<br>1180.<br>1180.<br>1180.<br>1180.<br>1180.<br>1180.<br>1180.<br>1180.<br>1180.<br>1180.<br>1180.<br>1180.<br>1180.<br>1180.<br>1180.<br>1180.<br>1180.<br>1180.<br>1180.<br>1180.<br>1180.<br>1180.<br>1180.<br>1180.<br>1180.<br>1180.<br>1180.<br>1180.<br>1180.<br>1180.<br>1180.<br>1180.<br>1180.<br>1180.<br>1180.<br>1180.<br>1180.<br>1180.<br>1180.<br>1180.<br>1180.<br>1180.<br>1180.<br>1180.<br>1180.<br>1180.<br>1180.<br>1180.<br>1180.<br>1180.<br>1180.<br>1180.<br>1180.<br>1180.<br>1180.<br>1180.<br>1180.<br>1180.<br>1180.<br>1180.<br>1180.<br>1180.<br>1180.<br>1180.<br>1180.<br>1180.<br>1180.<br>1180.<br>1180.<br>1180.<br>1180.<br>1180.<br>1180.<br>1180.<br>1180.<br>1180.<br>1180.<br>1180.<br>1180.<br>1180.<br>1180.<br>1180.<br>1180.<br>1180.<br>1180.<br>1180.<br>1180.<br>1180.<br>1180.<br>1180.<br>1180.<br>1180.<br>1180.<br>1180.<br>1180.<br>1180.<br>1180.<br>1180.<br>1180.<br>1180.<br>1180.<br>1180.<br>1180.<br>1180.<br>1180.<br>1180.<br>1180.<br>1180.<br>1180.<br>1180.<br>1180.<br>1180.<br>1180.<br>1180.<br>1180.<br>1180.<br>1180.<br>1180.<br>1180.<br>1180.<br>1180.<br>1180.<br>1180.<br>1180.<br>1180.<br>1180.<br>1180.<br>1180.<br>1180.<br>1180.<br>1180.<br>1180.<br>1180.<br>1180.<br>1180.<br>1180.<br>1180.<br>1180.<br>1180.<br>1180.<br>1180.<br>1180.<br>11 |

In

### lotFesomTempGradientMonthly(point, grad\_filt, grad\_mean\_filt, topo)





# **Problem for LSC: Find realistic Signal Covariance**

Select Suitable Correlated ARGO Observations

- compute signal covariance from FESOM
  - same period as OBP observations 2011-2014
  - example for OBP-site nr.4





# **Problem for LSC: Find realistic Signal Covariance**

Select Suitable Correlated ARGO Observations

- assign covariance and correlation of the closest FESOM vertex to each ARGO observation
- select only ARGO observations inside the latitudinal belt [*Obp.*  $lat \pm 5^{\circ}$ ] and with corresponding FESOM correlation  $\geq 0.9$  to ensure temperature similarity

correlation pattern:

- determined by (modeled) circulation
- similar for all OBP-sites





# Estimate Temperature Profiles at OBP-sites with Least Squares Collocation

• Least Squares Collocation:

 $b = \alpha C_{sl} (\alpha C_{ll} + C_A)^{-1} x$ 

- $C_A$  variance of selected ARGO points
- $C_{ll}$  covariance of selected ARGO points
- *C*<sub>sl</sub> covariance of the OBP-site to selected ARGO points
- $\alpha = 10^{-4}$  scaling factor to weigh provided variance
- x observed temperature at selected
  ARGO points
- perform for each depth level

| In | [28]: | 1<br>2    | pl                                                                                                                                                                                                                                                            |
|----|-------|-----------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|    |       | depth [m] | -0.0<br>10.0<br>20.0<br>30.0<br>40.0<br>50.0<br>60.0<br>70.0<br>80.0<br>90.0<br>100.0<br>135.0<br>160.0<br>190.0<br>230.0<br>280.0<br>340.0<br>410.0<br>490.0<br>580.0<br>680.0<br>790.0<br>910.0<br>1330.0<br>1330.0<br>1330.0<br>1330.0<br>1330.0<br>1330.0 |
|    |       |           |                                                                                                                                                                                                                                                               |







# Parametrization of ARGO Profiles

Why parametrize?

- reduce storage (per profile: 10 parameters instead of 100 in-situ measurements)
- condense the vertical T,S discretization
- define inversion parameters

Cubic B-splines fit best:

- smallest rms error
- number of parameters: 8-10
- knots at depths:

[0,50,100,150,200,500,1000,1500,2000]m

| Γn | [31] | 1<br>2    | p]                                                                                                                                                                                                                                                            |
|----|------|-----------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|    |      | depth [m] | -0.0<br>10.0<br>20.0<br>30.0<br>40.0<br>50.0<br>60.0<br>70.0<br>80.0<br>100.0<br>115.0<br>135.0<br>160.0<br>135.0<br>160.0<br>230.0<br>280.0<br>340.0<br>410.0<br>490.0<br>580.0<br>680.0<br>790.0<br>910.0<br>1330.0<br>1330.0<br>1330.0<br>1330.0<br>1330.0 |
|    |      |           |                                                                                                                                                                                                                                                               |







# Parametrization of ARGO Profiles

# Results:

- Is there a bias in FESOM vs ARGO below 300*m*?
- Anomaly at 150*m* depth?







# Next Steps:

- use climatology as a first guess, where ARGO data is missing
- compare models (FESOM) and ARGO variabilities instead of absolute monthly values
- determine whether the signal covariance is stationary using monthly batches
- ARGO outlier test and quality screening
- use parametrized profiles to perform the joint inversion with GRACE and Radar Altimetry



# Summary

- start of ROCSTAR project (compute 4D fields of temperature and salinity in the Inversion Framework)
- testbed in South Atlantic
  - in-situ OBP measurements
  - signal covariance from model data (FESOM)
  - suitable discretization with depth
  - temperature estimates at OBP-sites using Least Squares Collocation

I hope you will visit our website for more info: <u>https://rocstar.wobbly.earth/</u>



