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Introduction: The solar wind and collisionless
energy dissipation
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Solar Wind

Parameters
change with
distance;

Solar wind
heating;

Nearly collisionless
plasma;

Energy dissipation;

In-Situ
measurements.

(Taken from NASA)
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Turbulence in the Solar Wind

4 / 27



Mullard Space Science Laboratory

Top (ESA),Bottom (Verscharen et al., 2019) Anisotropy.

In the inertial range1, E ∼ k−1.7
⊥ ,

E ∼ k−2
‖ ;

CB: k‖ ∼ k
2/3
⊥ .

In the kinetic range2,
E ∼ (k−2.3

⊥ − k−2.8
⊥ ), E ∼ (k−3.5

‖ − k−5
‖ ) ;

CB: k‖ ∼ (k
1/3
⊥ − k

2/3
⊥ ).

1
Horbury et al, 2008; Alexandrova et al., 2009; Wicks et al., 2010; Goldreich & Sridhar, 1995.

2
Chen C.H.K. et al., 2010, 2011, 2012; Alexandrova et al, 2013; Cho & Lazarian, 2004; Boldyrev & Perez, 2012. 5 / 27
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Magnetic Reconnection in the Solar wind
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2D reconnection
Adapted from: (Top) Somov,(2012); (Bottom) Zweibel & Yamada,
(2016)

Adapted from
Zweibel & Yamada, (2016)

Plasmoid instability speeds up
reconnection;
X points outside of current
sheets due to guide field and
anisotropies, (Eastwood et al., 2013;
Wang et al., 2014);

Wandering of the magnetic
field lines and suppression of
plasmoid instability in 3D
(Lazarian et al., 2020).

Adapted from Lazarian et al. (2019)

7 / 27



Mullard Space Science Laboratory

3D reconnection
Adapted from Pontin, (2011)

Magnetic reconnection requires
the presence of a dissipation
region, E|| 6= 0 (Schindler & Hesse, 1988).

∫
fl
E‖ds 6= 0,

Adapted from Daughton et al. (2011)
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What is the link between reconnection and turbulence?
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Turbulence in reconnection

AWs generate turbulence and CSs
(Howes, 2016);

In the Harris CS, plasmoid
instability enhance reconnection
rate (Daughton et al., 2011;
Boldyrev & Loureiro, 2017 (2019)).

Reconnection in turbulence

At the smallest scales decoupling
of electrons and ions;

Reconnection as a dissipation
channel of turbulent energy. (Luca
et al., 2017, Cerri et al., 2017;
Grošelj et al. 2018).

Questions to answer

1 Is reconnection generated by the turbulent cascade?

2 How 3D reconnection looks like?

3 How reconnecction dissipates energy?
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The PIC code (Germaschewski, et al. 2016)
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Plasma simulation code

Why this PIC?

Why this code?

Explicit Particle In Cell
(PIC);

Code with explicit
discretization of fields and
particles motion;

Highly parallelizable;

Load balancing makes the
work per patch roughly
similar.

Computational facilities

TRILLIAN, UNH;

DiRAC: Data Intensive at Leicester,
UK.

Adapted from Germaschewski, et al. (2016)
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Set up to produce anisotropic kinetic turbulence
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Initialisation and numerical set up

δvαm
vA

= ∓δB
α
m

B0
;

km,‖ρi = C (|km,⊥|ρi )
2/3 .

Counter propagating AWs. Random
phases (ψ). Periodic boundary
conditions.
Lx × Ly × Lz = 24di × 24di × 125di .
∆x = ∆y = ∆z = 0.06di . ρi =

√
βdi

mi/me = 100. VA/c = 0.1,
βi = βe = 1, β = nkB T2µ0

B2

Ti ,⊥/Ti ,‖ = Te,⊥/Te,‖ = 1.
ne = ni = 100. B0 = B0ẑ .
The time step is 0.06/ωpi where ωpi is
ion plasma frequency. Outputs stored
every 24/ωpi or 0.02 τA.
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Evidences of turbulence in the simulation domain
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|J | isosurfaces at tωpi = 120

Formation of small scale structures.

Time evolution

Highly turbulent state between ωpi t = 72
and ωpi t = 144.

16 / 27



Mullard Space Science Laboratory

Turbulent features

(a) ωpi t = 24 (b) ωpi t = 120

Isocontours of the reduced 2D PSD in the (k‖, k⊥) for magnetic field at ωpi t = 24 (a)
and ωpi t = 120 (b). Broadening of the parallel cascade.
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Finding reconnection sites in the simulation domain
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Indicators of reconnection

Current sheets structures, |J | > 〈J〉+ Nth ∗ σst(J), where 〈...〉
represents the mean value taken over the entire simulation domain
and σst(J) =

√
〈J2〉− 〈J〉2;

Strong gradients in at least one of the components of the magnetic
field and magnetic null points;

Fast ions and electrons, |vi ,e | > 〈vi ,e〉+ Nth ∗ σst(vi ,e),

Heated particles |Ti ,e | > 〈Ti ,e〉+ Nth ∗ σst(Ti ,e),

Non zero parallel electric fields E‖ > 〈E‖〉+ Nth ∗ σst(E‖), where
E‖ = E · B/|B|.
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The white sphere marks the reconnection site in which magnetic streamlines
intersect and a filament of heated electrons and fast ions is present. Regions

with E‖ 6= 0 are marked with elongated boxes. The boxes are far from
reconnection site.
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Extended electric current structure (current sheet-like) above the sphere. The
dissipation region is a current filament.
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Volume rendering of Jz

at different times. Blue
is negative, white is
zero and red is positive.
At ωpi t = 72 a
instability is taken
place. At ωpi t = 96
rupture in a current
structure. At
ωpi t = 120 and 144
shear spikes associated
with particles exhaust.
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Figure: Schematic representation of our
reconnection event.

E‖ is not a good indicator for reconnection in our simulation.
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Future work
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Develop a method that:

Quantify the number of
reconnection sites;

Quantify the role of
reconnection in the energy
dissipation;

Analyse how variables change
along a 1D trajectory.

Future runs

Start earlier in the inertial
range (coupling of the large to
small scale cascade matters);

Closer output steps to study
wave propagation;

More realistic mass ratio.
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Summary and conclusions

We aiming to study dissipation in collisionless plasmas, specifically
whether turbulence gives rise to reconnection, and if so how
important the role of reconnection is;

Counter propagating AW with CBGS95 as initial conditions develop
a turbulent cascade consistent with observations;

Using a general list of criteria, we identified a potential reconnection
site and show that magnetic field is topologically changed. Particles
are accelerated and heated near the reconnection region;

Further work needs to be done to quantify the number of
reconnection sites, the energy balance in dissipation between
reconnection and other mechanisms.
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