EGU 2020 | Online 4 - 8 May 2020 ▶ | Session: ITS2.9/SS8.1 ▶

Detection and quantification of microplastic in soil using a 3D Laser Scanning Confocal Microscope

Tabea Zeyer and Peter Fiener, University of Augsburg

Functional Surface ♣ – click [▶]

INTRODUCTION▼

MATERIALS AND METHODS ▶

PRELIMINARY RESULTS **★**

CONCLUSION★

CONTACT ★

Project - Information **▼**

INTRODUCTION

Three major challenges in detection of microplastics in soil:

- **Extraction:** The separation of plastic particles from soil matrix.
- **Detection:** The measurement is disturbed by residues from the soil matrix.
- Particle size analysis: The analysis of a comparable unit for the unshaped microplastic particles - necessary ecotoxicology data.

A plastic fiber and residues from the soil matrix (soil aggregates and inorganic soil particles) in 240 times zoom, after a separation process.

A robust method to determine microplastic in soils with an extensive particle size analysis is needed.

3D Laser Scanning Confocal Microscope (Keyence VK-X1000, Japan):

- Shows differences for microplastic and soil particles:
 - Optical
 - Surface characteristics (roughness)
- Robust against disturbances:
 - Residues from the soil matrix
 - External vibrations
- Non-destructive method

To produce a robust, operational and automated method for the analysis and detection of microplastics in soil with an extended particle size analysis.

MATERIALS AND METHODS

SOIL PROPERTIES

Loamy sand:

72% sand, 18% silt, 10% clay, 0.9% organic carbon Homogenized Ø 2 mm

MICROPLASTIC

High Density Polyethylene (HDPE)

 $50 - 100 \mu m$; $250 - 300 \mu m$

SAMPLE PROCESSING – DENSITY SEPARATION

I Mixing

20 gram soil + 400 ml dist. H₂O (Ultrasonic bath)

II Centrifugation

 $2 \min - 2000 q$

~ 8 h

III Freezing

IV Separation Cut off the upper layer

V Concentration

Melting it in a funnel to a paper filter - Ø 1 cm circle area

3D LASER SCANNING CONFOCAL MICROSCOPE (Keyence VK-X1000, Japan) ▶

- KEYENCE
- Depth of field
- Semiconductor: Laser 404 nm

Analysis tool: VK-X 1000 Multiple File Analyzer

• It determines surface characteristics using a surface

roughness parameter.

- For example, the **Str-Parameter**:
 - Specifies the aspect ratio of the surface creases
 - The smaller the parameter, the uniform the creases.

PRELIMINARY RESULTS

PRELIMINARY RESULTS

Optical results (x 240 zoom)

Section of a sample:

- Inorganic soil particle (light fraction)
- Aggregate of HDPE 50 100 µm particles
- HDPE 50 100 µm particle

Background: White paper filter

Surface characteristic (x 240 zoom)

clear differentiation → RGB-Values + Laser intensity **RGB-Values** Laser intensity

Surface roughness parameter (Str-Parameter)

CONCLUSION

Compared to previous methods, 3D laser scanning confocal microscopy can provide an robust, automated and operational analysis to detect microplastic in soil, but more research is needed

SUMMARY

Sample material:

Agriculture bulk soil

Sample processing:

Density separation

No hazard substances

Robust measurement device

Combinability with other methods

- Non-destructive method
- For example a combination with mass spectrometric methods

Quantification:

- Optical diffrences
- Surface characteristics
- Particle size

Limitation:

- Max. 20 gram sample

Time:

- ~ 2 h / scan
- Ø 1 cm circle area with a x 240 zoom

NEXT STEPS 🚅

- Data processing to result in number and mass of microplastic particles with:
- Cloud Compare
- Neural networks or machine learning
- Validation runs to obtain a comparison of previous methods Materials:
 - Sandy and clayey soil
 - HDPE 50 100 and 250 300 μm
 - LDPE < 50 and 200 800 μm
 - PS <100 µm
 - PBAT/PLA < 2 mm
- Analyzing weathering processes in soil

Tabea Zeyer and Peter Fiener, University Augsburg

BUSINESS CARD

Tabea Zeyer M.Sc. PhD student

tabea.zeyer@geo.uni-augsburg.de

