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geometry of fold and thrust belts has grown apace in the last few years, Oligocene units — \ \@}‘
but the interplay between the two remains a significant problem for 5o
structural interpretation. The Gevaudan diapir in the fold and thrust belt Eocene units B
of the sub-Alpine chains of Haute Provence is well known and has been ‘ ,
documented by numerous eminent alpine structural geologists. . Upper Cretaceous units \ =] vaangiien
Graciansky, Dardot, Mascle, Gidon and Lickorish and Ford have all
described and illustrated the geometry and evolution of the structure,
and Lickorish and Ford’s interpretation is figured as an example of
diapirism in a compressional setting by Jackson and Hudec in their text
on salt tectonics. We review these various interpretations and present Middle Jurassic units
another. i ,
The differences between the various interpretations say much about the . Lower Jurassic units \"q A \ . . ‘
complex interplay of salt diapirism and thin-skinned thrusting and have _@lek - l: : ez /.\
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diapir. Y
The Barreme basin is a thrust-top fragment of the Provencal foreland . Crystalline basement rﬁg\ \?\ "-'v/‘

basin and has been described in detail from both sedimentological (e.g. _ _ _ _ | 4| sinemurian
Evans and Elliott, 1999) and structural (e.g. Antoni and Meckel, 1998) Figure 1. The fold and thrust belt of the Southern Subalpine Chains comprises the Digne and Authon thrust E—

sheets. The thrust system has polyphase deformational history (Graham et al. 2012.) Thrusting started before the —
Eocene. During the Eocene and Oligocene a series of thrust-sheet-top basins evolved one of which is the Barréme
basin. During the Miocene and Pliocene the mountain front reached the Valensole basin.
the basin it is possible to interpret successive depocentres which may The study area is indicated by the black rectangle. The location of the regional cross-section (Fig. 3,4) is indicated

: : : by the black line. The white line indicates the edge of the Provencal platform during the Early and Middle Jurassic.
record progressive salt withdrawal. We argue that though thrust loading AR: Argentera; D: Dome de Barro6t; A: Annot basin; Ar: Argens syncline: Pe: Peyresq syncline; CA: Castellane Arc;

must be the fundamental driving mechanism responsible for salt p1. pigne thrust sheet: AT: Authon thrust sheet; G: Gevaudan diapir BA: Barréme basin; Ba: Barles; M: Majestres ) ey Himestone | Bioclastic imestone
movement late in the tectonic history of the region, thrusting has not syncline; S: St Jurs imbricates; V: Valensole basin S detone

done much more than modify existing salt related geometry. i ; and siltstone Evaporites
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points of view. Here we make the case that it is also a salt related
minibasin - a secondary minibasin developed on a now welded
allochthonous Middle Cretaceous salt canopy. We believe that within
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Figure 2. Lithostratigraphic column of the study area and the major tectonic events
in the Western Alps. We refer the lithostratigraphic units as they are shown in this

3) Various interpretations of the Gévaudan diapir and the surrounding basins Jlhostiatorapnc columy,

Figure 5. A “non-salt attempt” interpretation
of R. Graham around Gévaudan

Figure 3. Modified after Graham in Elliott et al. 1985, a pure fold and thrust belt interpretation

Figure 4. Csicsek 2019, one of the first attempt of a regional section during a PhD project. Note the thickness changes in _ _ _ _ _ _ _ _ _
the Mesozoic succession and a lot of possible, welded salt related contacts. Figure 6. Artoni & Meckel 1998, an another structural interpretation. Note the thick salt layer at the top of the basement, thickness changes in the Mesozoic succession ,

the steep thrust faults bounding the different units and a possible young-on-older contact between the Gévaudan-Reichard unit and the Douroulles syncline.
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Figure 7.Gidon 1997. Cross-setion of the southern part of the Barréme basin.
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| o Line of mai o (Fig. ). () St T i 120 of toper Olicocene Figure 5. Sketch illustrating the regional tectonic setting of the Barréme thrust-sheet-top
conglomerates. (¢) Line of main cross section (Fig. 5). ions section, showing on-lap of upper Oligocen . . . . L

facies onto the Eocene limestone and the overthrust of Cretaceous limestones onto the eastern margin. (e) b_asm between middle Eocene (Ca- 40 Ma) a.nd early Ollgocene (Ca-_ 30 Ma) time. This ~10 my
) A, , o Barréme section, showing the dramatic eastward shift of the basin depo-centre during the late Oligocene, and |:| Upper Cretaceous limestone - Triassic gypsum time interval spans the initiation of the marine thrust-sheet-top basin to the onset of nonmarine
) S Chasteut Lo A - 77 Z e the structural complications caused by the intrusion of the Gevaudan evaporite diapir. , sedimentation at Barréme, the so-called flysch to molasse transition of Allen et al. (1991). Note
s <3 Ti s : 3 [_] Middle Cretaceous shale [__] Basement that the thicknesses of stratigraphic units are not drawn to scale.
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Figure 8. Schematic map of the structures of the Southern Figure 9. Cartoons shoving the evolution of the Gévaudan diapir Figure 10. Lickroish and Ford 1998. Series of cross sections, form N to Figure 11. Lickorish & Ford 1998 cross section in Jackson and Hudec 2017. Their interpretation Figure 12. Sketch showing the evolution of the Barréme
Subalpine Chains, Gidon 1997. Note the strike-slip faults and the sourroundign basins. S. Their interpretation includes the eastward migration of the includes an allochthonous salt sheet buried by mid-Cretaceous shale (n7c1). The Eocene thrust-sheet-top basin. Note the generally constant thickness
around the Gévaudan area. Note the relatively short period of structural evolution. Gidon 2000. depocenter in the Barréme basin and the intrusion of the Gévaudan and Oligocene units are thickening towards to east. of the Mesozoic sccession. Evans and Elliott 1999.

diapir during Late Oligocene.

4) Geological and schematic structural map of the study area 5) Observations, stratal and structural geometries around the Gevaudan diapir
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Figure 15. The view of the southern side of the Clavoune section. Springs where salt brine Figure 16. The view of the northern side of the Clavoune section.
flows to surface are located in the valley E of Clavoune (Morin et al. 2004). See Fig. 13 for locaction.
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to the west and onlapping onto the steeply dipping Upper Creatceous limestone on the
western flank of the minibasin (a).
The Upper Cretaceous succession is partly composed of intraformational breccias (b).

Flgure 13. The new geologlcal map of the stu dy area. (Key: Flg 2) Figure 18. Tilted subvertical Poudingues d’Argens on the eastern flank of the Barréme basin. The underlying We suggest that the Poudingues d'Argens conglomerates may have been formed by the

. . ) . . . . reworking of these Upper Cretaceous breccias (c) which were deposited locally in the
Upper Cretaceous succession to the E is also composed of intraformational breccias. The tilting is related to secondary minibasins on the top of the allochthonous salt sheet.

evaucation of the allochthonous salt due to thrust loading. Paleocurrent data measured on tilted channel fill
‘ [ [ ] | . suggest N-S flow direction, parallel with bounding salt wall of the basin. See Fig. 13 for locaction.
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| % oy . 6) Evolutionary diagram

i Figure 19. Cartoons shoving possible Early Jurassic - present day evolution of the Gévaudan area, NOT TO SCALE
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£ \ \y « The Gevaudan areais a good example of the
| N complexity and uncertainty associated with salt relat-
. i ed geometry in fold and thrust belts, well-illustrated
| — by the variety of interpretations past and present.
Figure 14. Schematic structural map of the study area showing the occurences =  Halokinetic influence in the structural and strati-

of Upper Triassic evaporites (black) and younger Triassic units (purple). graphic evolution of the area (and many others in the
The pink dashed line represents the possible extent of the middle Cretaceous Haut Provence fold and thrust belt) is shown by
extrusive salt sheet. anomalous stratigraphic thicknesses and structural
geometries.
« The well known Barreme Basin, a thrust -top
Present day. SCALED SECTIONS fragment of the Provencal foreland basin, is re-inter-
preted as a secondary minibasin developed on top of
an allochthonous salt sheet which extruded onto the
Albo-Cenomanian sea floor at a time of low sedimen-
: : : tation rate. The probable original extent of this
Section line 2, detailed
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b ' ) ‘ sumably in response to more internal thrust loading,
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cene rocks of the Barreme Basin and the earlier
formed Poudingues d’Argens minibasin was strongly
rotated to be overlain unconformably by the younger
formations. In detail there are several other uncon-
formities in the section.
« Oligocene or Miocene thrusting emplaced part of
the near-crest flank of the original diapir as the al-

lochthonous structural ‘horse’ which now forms the

f Clavoune hill. The Gevaudan diapir is the remnant of
8) Reterences the one-time canopy.
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Figure 20. Section line 1. See Fig. 13,14 for location. Figure 21. Section line 2. See Fig. 13,14 for location.




