Nitrite isotope characteristics in ¹⁵N-labelled and non-labelled agricultural soil

Dominika Lewicka-Szczebak¹ and Reinhard Well²

¹Centre for Stable Isotope Research and Analysis (KOSI), Büsgen Institute, Georg-August University of Göttingen, Germany

²Thünen Institute of Climate-Smart Agriculture, Braunschweig, Germany

Introduction

Nitrite (NO_2) is a crucial compound in the complex N soil cycle. As an intermediate of nearly all N transformations, its isotopic signature may provide precious information on the active pathways and processes. NO_2 analyses have been already applied in ¹⁵N tracing studies increasing their interpretation perspectives (*Müller et al., 2014*).

Natural abundance NO₂⁻isotope studies in ocean waters are already used as important tool in tracing N transformations (*Buchwald & Casciotti, 2013*). **Natural abundance NO₂⁻isotope studies in soils were so far not applied and this study aims at testing if such analyses are also useful in tracing the soil N cycle.**

Methods

Keeling plot applied to identify the dominant NO_2^{-1} source

Based on the intercept (b) the **dominant NO₂** input is characterised with $\delta^{15}N_{NO2}$ of -11.7 ‰

when related to NO₃⁻ (with mean $\delta^{15}N_{NO3}$ of 4.5 ‰):

$$\epsilon (NO_2^{-}/NO_3^{-}) = -11.7 \% - 4.5 \% = -16.2\%$$

value within the literature data for NO_3^- to NO_2^- reduction step of denitrification

Nitrate reduction N isotope effect ~ - 15 ‰ (Granger et al., 2008)

Results – nitrite and nitrate - ¹⁵N treatment

Sudden drop in ¹⁵N abundance in NO₂⁻ $(a^{15}N_{NO2})$ after water addition to the soil

¹⁵NO₃⁻ treatment

water added 16 16 water added a¹⁵N [atom % excess] a¹⁵N [atom % excess] ⁸ 12 NO₃-NO₃-NO₂-NO₂-4 4 NH₄+ NH_4^+ 0 0 100 200 300 100 200 300 0 0 hours hours

This indicates an incorporation of **new source of unlabelled NO₂**⁻ for the wet part (two last samplings) 5

 $a^{15}N_{NO2}$ decreases of ca. 5 to 10 atom %, and $a^{15}N_{NO3}$ only slightly of ca. 1 atom %.

¹⁵NH₄⁺ treatment

In NA isotopes this change is reflected in higher $\Delta^{15}N(NO_2^{-}/NO_3^{-})$; for the wet part of the experiment it was positive with mean of +1.6‰, whereas for the dry part it was lower with mean of -5.9‰.

Since for this case study $\delta^{15}N_{NH4+}$ is very high the new nitrite source noted for last two samplings (with ¹⁵N treatment) can be rather Norg oxidation.

 $\delta^{18}O_{NO2-}$ is very variable and complicated due to O-atoms equilibration with ambient water, since less informative.

Possibly NO_2^- originating from both nitrate reduction and ammonium oxidation can be partially equilibrated with water. The final $\delta^{18}O_{NO2}$ depends on the balance between nitrite abiotic equilibration and biological turnover (Buchwald & Casciotti, 2013). For soil pH of 6.8 equilibration processes will be more rapid than for ocean water of pH 8.

Results – nitrite and $N_2O - {}^{15}N$ treatment

Changes in nitrite isotopes are not reflected in N₂O. Whereas $a^{15}N_{NO2-}$ drops to 3 - 6 atom %, for $a^{15}N_{N2O}$ still 10 - 14 atom % are found.

This shows that NO_2^- pools originating from different pathways must be isolated and not the entire NO_2^- pool undergoes further reduction to N_2O .

Conclusions

• Natural abundance nitrite isotope studies may provide a new important tool in constraining the N soil cycling. Here we showed that based on $\delta^{15}N_{NO2-}$ Keeling plot the dominant NO_2^{-1} source can be indicated and based on $\Delta^{15}N(NO_2^{-1}/NO_3^{-1})$ the changes in contribution of nitrate reduction and ammonium or organic N oxidation may be tracked;

• However, the pathways contribution for NO_2^- is not relevant for indication of N_2O sources, since not all NO_2^- pools are further reduced to N_2O ;

• $\delta^{18}O_{NO2-}$ is probably not very useful in soil studies due to fast exchange of O-atoms in low pH; however for soils of neutral pH this may be an indicator of biological tranformation rates, similar as for ocean studies;

• Further experiments are needed to determine the characteristic isotope efects associated with particular NO_2^- inputs and sinks for soil studies.

This research has been supported by the Deutsche Forschungsgemeinschaft (grant no. LE 3367/1-1). Many thanks for help in laboratory works are due to Frank Hegewald, Martina Heuer, Anette Giesemann, Nicole Altwein, Ute Tambor, Kerstin Gilke, and Stefan Burkart.