

NATURWISSENSCHAFTLICHE FAKULTÄT

<u>Genesis and Evolution of Black Soil in the</u> <u>Eastern Mediterranean</u>

Hussam HAG HUSEIN, Bernhard Lucke, Wahib Sahwan, and Rupert Bäumler

EGU 2020

Soil fertility degradation in the Middle East...myth or reality?

- The environmental history of the Middle East is not an issue of a fertile land becoming desert. Most of it is desert and it always has been.
- The precious rain from the Mediterranean falls for 100 km or so from the coast, creating some fertile areas, as isolated islands that were not desert and they still are not.

www.google.com

However, whatever the definition is used, there is quite a lot of desert impact in the equation (evaporation, aeolian dust).

The Eastern Mediterranean

Located in the eastern corner of the Mediterranean Sea Submitted to Mediterranean climate condition with meld wet winter and hot dry summer The soil is red Mediterranean (terra rossa) with red color and poor of organic carbon and high of carbonates

The occurrence of such soil is occasionally in Mediterranean because of the climate condition with xeric moisture and thermic temperature soil regimes, which is not favorited for forming and developing such kind of soil

However, it is still occurring at a less extending in different climatic zones from xeric to aridic and called SAWDA'A

Their current occurrence rise many questions about the conditions of formation and type of paleoclimate that prevailed

Theories on their formation in the Mediterranean region are not in general agreement

The black soil was studied at five bio-climate areas according to Pluviothermic Equation of Emberger (1955):

Upper humid

Fresh and temperate

www.google.com

Martials and Methods

These areas submitted to meditteranian climate, frish winter, hot dry summer with annual precipitation from 200 to more than 1000 mm

The soil moisture regime is xeric and the temperature soil regime is thermic

Climax vegetation is

-Pinus brutia forest;

-maquis/mainly Quercus in wet areas.

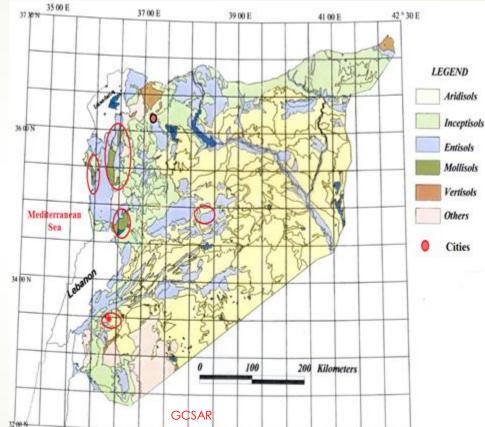
-Laurus nobilis, Pistacia, Myrtus, Olea europea in moderately wet areas,

-Tamarix ssp in areas with less than 200 precipitation areas

16 soil profiles of black soil of different topography were studied from different bio-climate areas and on different parent materials (Calcareous sand, Lacustrine marl, Limestone, Dolostones,)

Profile Cod	Coor	Elevation m. a. s. l	
	N	E	
Jable <mark>h</mark>	35°25'10.67"	35°55'23.37"	28
Al Qanjra	35°37'43.7"	35°49'40.13"	10
Kassab-Zanzaf	35°47'44.77"	35°55'46.52"	240
Kasab Nibh Almur	35°52'41.93"	35°59'35.60"	380
Kassab	35°54'47.54"	35°59'24.10"	800
Der Autman	35°58'22.8"	36°19'16.2"	325
Drkosh-Al-daher	35°58'04.8"	36°25'37.9"	530
Akkar-Zahed	34°41'38.66"	35°59'12.36"	18
Barshin	34°52'20.60"	36°20'37.41"	930
Houla	34°53'42.88"	36°32'11.59"	375
El Ghab-Joureen	35°31'58.92"	36°15'7.67"	183
El Ghab-Ennab	35°25'25.40"	36°14'41.89"	182
El Ghab-Al Kareem	35°23'48.30"	36°19'49.73"	178
El Ghab-Qarqor	35°43'58.76"	36°19'13.47"	170
El Ghab-Mshik	35°42'20"	36°20'26.7"	175

Soil describing and sampling was based on procedures of Soil Survey Division Staff (1993). The morphological study and soil profile description were based on field book for describing soils U.S.D.A-NRCS (1998). Laboratory analysis included


- Organic carbon (Corg.)
- The particle-size analysis
- Soil reaction (pH)
- Exchangeable cations
- Calcium carbonates
- Total Nitrogen
- Electrical Conductivity (EC)
- Available phosphorus
- Total potassium

The results

The investigated of the black soil in the eastern Mediterranean can be suggested two soils types:

1-Calcareous black soil (Rendzina) on littoral plains and hilly areas,

2- Hydromørphic black soil,

Ja	abl	leh	

Classification USDA(2003): Typic Rendolls WRB (2015) Rendzic Leptosols Location: Lattakia Governorate, Syria. Jableh. Coordinates: 35⁰25`10.67N35⁰55`23.37E Altitude: 28 m a. s. 1 Physiography: Flat plain Drainage class: Moderately well drained, very slow surface run off Vegetation: Cultivated citrus trees Parent material: Conglomerates calcareous, sandstone Date of Sampling: June 20-2007

Horizon	Depth (cm)	Description
Oi	0-5	Very dark gray (10YR 3/1 d) to black (10YR 2/1 m) slightly decomposed plant material; slightly plastic; frequent, rounded stone, constituting approximately 10 percent of the horizon; abundant very fine to medium roots, mostly inside peds; abrupt smooth boundary
A	5-35	Very dark grayish brown (10 YR 3/2 m) massive; weak, fine, subangular blocky structure; firm (moist), sticky and plastic;; few, very fine and fine, discontinuous, irregular, simple, open pores; few, fine and very fine roots, mostly inside peds; clear, wavy boundary
A2	35-50	Dark red (2.5Y3/6 d) fine granular structure; few, fine, vertical, inped, simple, closed pores; few, small, soft, carbonate stones; few fine roots, inside peds; very abrupt, smooth boundary
С	50+	Conglomerates calcareous, sandstone; very pale brown10YR8/2, pink 7.5YR8/3

Horizon	Depth (cm)	CaCO ₃	pН	pН	Particles size distribution (%) Ø mm			1	Texture		C _{org.}	
		%	$(CaCl_2)$	(H ₂ O)	Sand	S	lit	Clay				%
			1:1	1:1								
Oi	0-5	2.2	7.42	7.54	54	1	16	30		Sandy clay loa	am	4.42
A	5-35	16.4	7.64	7.8	60	1	14	26		Clay loam		2.41
A2	35-50	29.5	8.1	8.2	46	2	22	32		Sandy clay loa	am	0.9
С	55+	44.0	7.42	7.54	40	4	40	20		Sandy clay loa	am	0.1
Horizon	Depth	Av.K	Ext. P	Tot-N	Min	- N		EC		CEC		BS
	(cm)	mg.kg ⁻¹	mg.kg ⁻¹	%	mg.	kg-1	1:2	dS.m ⁻¹		meq.100g ⁻¹		
Qi	0-5	-	31.3	0.38	-			0.5		52.5		100
A	5-35	-	20.5	0.19	-			0.4		62.5		100
A2	35-50	-	29.0	0.08	-			0.4		67.9		100
C	50+	-	19.0	-	-			0.3		70.2		100

El Ghab Classific	El Ghab Classification USDA(2003): Patchic Haploxeroll,									
WRB (2	WRB (2015): Calcic Chernozems									
	Location: El Ghab plain, Syria. Coordinates: 35º42`20N 36º20`26.7E									
	: 175 m a. s.									
		to depressional valley fills								
	/	opography with a characteristic slope of 1 percent or	1							
less										
Drainage	e class: Mod	erately well drained, very slow surface run-off, slow	Stand Land							
permeab	ility									
<u> </u>	on: Elms tre		A A							
		and Quaternary or more recent lacustrine deposits.	A C							
Date of S	Sampling: Ju	aly 16-2010								
Horizon	Depth (cm)	Description								
A	0-26 Black (10 YR 2/1m), Dark brown (10 YR 3/3 d) midrate, medium, granular structure; soft (dry), slightly firm (moist), sticky and plastic; many, fine, horizontal, inped, simple, open pores; plenty, fine roots, between peds; abrupt, smooth boundary									
A2	A2 26-55 Very dark brown (10 YR 3/2 m) fine granular structure; firm (moist) sticky and plastic; few, fine, vertical, inped, simple, closed pores; plenty, fine roots, between peds; gradual, wavy boundary									
AC	55+	Grayish brown (10 YR 4/1 m) massive structure; firm (moist), sticky and plastic; few, fine, vertical, inped, simple, closed pores; few, small, soft, carbonate accumulations on ped faces; few fine roots, inside peds								

Horizon	Depth	Particl	es size di	sruption	Texture	C _{org.}	pН	Carbonates as CaCO ₃		CEC	BS
	(cm)		(%)Øm	n		%	H_2O	%		Cmol.kg ⁻¹	
		Clay	Silt	Sand			1:1	<2mm <0.002mm			
А	0-26	28	26	46	Sandy clay	4.2	7.23	41.0	17.0	42	88.2
					loam						
A2	26-55	18	34	48	Loam	3.1	7.86	52.5	27.0	24	88.3
AC	55+	30	24	46	Sandy clay	2.2	7.64	76.0	26.0	22	75.7
					loam						

El Ghab: physical and chemical analysis

Horizon	Depth	Extractable bases meq.100g-1			Ext. P2O5	Min- N	EC mS.m ⁻¹
	(cm)	Ca	Mg	K	mg.kg-1	mg.kg ⁻¹	
A	0-26	28.0	8.0	0.2	11.8	2	1.6
A2	26-55	15.0	1.1	0.1	8.2	4	2.1
AC	55+	11.0	0.6	0.1	3.3	2	2.5

TOPSOIL MORPHOLOGY; PYSICAL AND CHIMECAL PROPERTIES

Soil color Rnages between 10 YR 2/1 moist to 10 YR 4.5/4 dry

Soil texture Clay, Sandy clay loam to silty clay loam

```
Soil organic carbon
4.42 to 1.71%
```

Soil CEC 32.8 to 52.5

Soil structure

Midrate medium fine granular, sub angular to massive

5.8 slightly acid to 8.1 Moderately Alkaline

Discussion

1- Calcareous black soil (Rendzina) on the littoral plain and hilly areas

- occur in a humid and sub-humid Mediterranean climate, annual precipitation exceed 800mm
- Developed on limestone, sandstone, chalk, dolostones and smellier calcareous materials
- High organic carbon content as well as high carbonate content like the entire of soil profile

Calcareous black soil (Rendzina) on the littoral plain and hilly areas

The dominated soil is Typic Rendolls (The Proper Rendzina) that has developed from Brown Calcisols or directly from calcareous regolith

Rendzina on chalky marl is at more advanced development stage.

The soft weathering parent material permits to developing a relatively thick profile, with developing of a primitive illuvial zone or micro B horizon.

ST: Typic Calcixerolls WRB: (Somerirendzic) Calcaric Leptosols

Brown rendzina on Lemestone	Gresish rendzina on Serbantenes	Redish rendzina on Dolostone	Para rendzina on steep slope		
Clacic Pachic Hapoloxerolls	Typic Rendolls	Entic Hapoloxerolls	Ain Al Beida		
Leptic Kastanozem	Rendzic Leptosols	Rendzic Humic Leptosol	Calcaric Leptic Regosols		
		10 10 10 10 10 10 10 10 10 10 10 10 10 1			

Hydromorphic black soil

✓ This soil is the most important in terms of extension and terms of agricultural use.

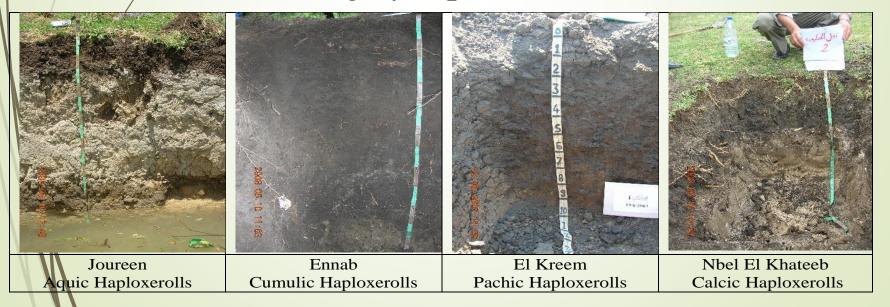
The annual precipitation ranges from 500 to 1000 mm.

18

The hydrologic conditions play drive role in the evolution and developing, (bad drainageheavy clayey, very slow runoff
 Theses associated with the extension of the great African-Syrian faults (the dead sea fault) along the eastern coast of the Mediterranean, led to the emergence of many depressions (Jordan valley, Hola Galilea, Houla plain, El Beqaa valley, El Ghab rift valley, El Amuq rift valley).

Water stagnation and bad drainage had their roles in the accumulation of organic matter on the topsoil to the extent that these soils were wetlands before artificial drainage

Black soil in El Ghab Valley



✓ Field and the morphological data show that the soil receives more moisture (ground moisture) than the prevailing moisture regime suggests.

Thickness of mollic, occurrence of carbonate, the level of water groundare features assist in soil classification at the lower categories, as such Aquic, Cumulic, Pachic, Clacic pachic, and Typic Haploxerolls are assumed to be largely represented,

Conclusions

Black soil was extremely extended in the eastern Mediterranean area. However, it is still occurring at a less extending in different climatic zones from xeric to aridic
 The existing of such kind of soil under arid and semi-arid conditions, raising a question about the geneses and forming process and condition associated particularly paleosols and paleoclimate, which requires further researches

In our study two types were found: Rendzina soil, and Hydromorphic black soil.

- ✓ The Hydromorphic black soil seems to be the oldest soil, while the rendzina is the most recent one.
- Rendzina occurs on limestone, sandstone, chalk, dolostones, and smellier calcareous materials with the dark surface horizon and high carbonate content, this kept it completely base saturated.
- This soil weak developed, has immature profile and with domination of Proper Rendzina (Typic Rendolls).

Thank you

