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Motivations

Fig. 5. Lead-lag correlation map (Spearman’s rho) of the amount contribution \
anomalies of (a) BoB, (b) IDC, (c) INSC and (d) PS for the E1 subregion with
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Given the profound socioeconomic impacts of the EaSt ASlén 60°N| different meteorological variables during its heavy rainfall days. Panel (1) shows
Summer Monsoon (EASM), there has been growing interest in 66-72% of the precipitation the time lag with the strongest lead-lag correlation fields of Z850A (shaded),
studying the moisture sources involved, which represents a 50°N EAGM 1 P P b’ o N, Z200A (contour; interval: 0.05 starting from +0.1) and IVTA (vector). Panel (2)
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. . o . 30°N trajectory model (i.e. . @o@ i \ (XA shown only. All correlations shown are statistically significant at the 0.05 level.
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moisture sources, we employ a 2D dynamic recycling model 0° = (Fie. 2). F i Based on the lead-lag one-point correlation map during heavy
. . . . - : ig. 2). For each sin : :
(DRM). It is a semi-Lagrangian model derived solely from the (0°s| WIO EIO X 2 S the hiokall rainfall days (top15%), a westward propagating pressure
. . . ° s = 1 regions, the highes : : : ST
atmospheric water budget equation and allows computationally X % 7 .- & ) 4 b & w anomaly is associated with enhanced contributions from South
efficient estimations on the moisture sources with good fidelity 20°S 50°E 80°E T10°E 140°E 170°E i}eleC H}t% - 11)5 ire (?unt h p A2 N, Asian and Indian sources (Fig. 5a2, b2). Conversely, a cyclonic
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(Martinez and Dominguez 2014), especially when the atmosphere . . o , ¢ 5 » circulation anomaly is related to more moisture supply from
. : . . . Fig. 1. Prescribed 30 regions in the DRM. E1 to E6 represents the importance of the summer np—pd2)PS allleads Philiopine S (Fig. 5d2) Th likelv due to th 1
over East Asia and adjacent seas is largely well-mixed [See Figure EASM land subregions and are set as sink regions in the model. onsoons EEEE s gdo@:ﬁf 1\ tlippine Sea (Fig. . These are likely due to the zona
3b and 4b in Goessling & Reick (2013)]. i t w | \ s.,?@ ; = oscillation of the subtropical high.
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o [ IMPORiREs of land sources f‘*‘ S0, pressure dipoles are noted. The former tends to steer moisture
sorn | { o (Fig. 3). - — Lead time (4ay) ~ from nearby sources (Fig. 5a, b, d), while the latter supports
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y y o | o Figure 4 unveils a shift in dominant sources from southwesterly to subregions (Fig. 6). We speculate that such upper-level wave
» Explore the potential influence of the El Nifio-Southern Ny N AS | oy AN LN _ southeasterly sectors on intraseasonal time scale. For example, E1 receives trains creates divergent circulation in which rising motion is
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