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The solute transport problem (1/2)

Water quality is continuously threatened in most rural areas, in
both low- and high-income countries. Agriculture, in fact, is one
of the biggest sources of pollutants, such as pesticides,
fertilizers, irrigation wastewater and manure, which are the most
common Non-Point Source (NPS) chemical contaminants.
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The solute transport problem (2/2)
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Let’s consider a soil profile, representative of a soil unit, which is
discretized in a sequence of horizon, with well defined
hydrological characteristics.
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The scope of the work

The scope of this work is to present
an extended transfer function model (TFM-ext), 

which simulates the spatio-temporal distribution of non-point-
source solutes along the unsaturated zone at large scales. 
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This approach is based on the definition of a probability density
function for the travel times of a solute particles moving in a
field soil, (Jury, 1982) .
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The transfer function model (1/5)
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According to this model, the output concentration at the
investigated depth is:

Cz(z, t) =

Z T

0
Co(t)ff (z, t)dt
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Output concentration at a reference depth Travel times pdf

Input concentration

The transfer function model (2/5)
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Cz(z, t) =

Z T

0
Co(t)ff (z, t)dt
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The transfer function model (3/5)
According to this model, the output concentration at the
investigated depth is:
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The transfer functions for each soil horizon are derived from the 
soil hydraulic properties, according to Scotter and Ross, 1994.

ff (z, t) = �1

q

dK(✓)

dt
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Relationship between 
hydraulic conductivity and 
water content

Travel times pdf
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The transfer function model (5/5)
The transfer functions for each soil horizon are derived from the 
soil hydraulic properties, according to Scotter and Ross, 1994.
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Let’s assume that we are interested in transport to depths greater
than the soil depth l, for which the TFM-ext has been developed, e.g.,
below the soil profile till the groundwater table level z, where z is
greater then l.
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input flux
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groundwater

The extended transfer function model (1/2)

l z
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To extend the process till z, we used the Generalized Transfer Function
(GTF) proposed by R. Zhang, 2000, according to which the travel time
moments scale with the ratio z/l, while the travel times distribution has
a lognormal form.

The extended transfer function model (2/2)
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• Meteorological forcings (mean daily precipitation, actual 

evapotranspiration);

• Hydraulic properties of each layer (unsaturated hydraulic 

conductivity K(θ) à van Genucthen-Mualem equation);

• Water table depth; 

• Solute input concentration; 

• Decay and retardation factors for reactive solutes. 

Input data
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Sensitivity analysis (1/4)

In order to evaluate the relative importance of each parameter of
the hydraulic conductivity curve on the TFM-ext output,
- N random sets were generated for a Monte Carlo (MC) procedure,
- using 46 soil profiles data.
Moreover, the sensitivity of the model was also tested against flux
variations.
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Sensitivity analysis towards the parameters (2/4)
Results of the MC shown that qs and t are responsible for 60 % and
32% of the travel times variance, respectively, and therefore, those are
the most sensitive parameters in the model.

Relative importance
index toward variance
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Sensitivity analysis towards the parameters (3/4)
The high relative importance of θs is explained by its great influence on the flow 
and transport processes, while the parameter τ controls the slope of the 
hydraulic conductivity curve and thus, its derivative.  
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Sensitivity analysis toward the fluxes (4/4)
As regards the flux variations, both the mean and the variance showed the same
behavior: they decreased sharply till a certain value and then tended to an asymptotic
value. As soon as q increases, more pores contribute to the flow and reduces indeed the
mean travel times to reach the fixed depth till a certain value. After this value, all the
porous space is involved in the flow process till the upper limit of complete saturation
(θ0 = θs).

400 poorly contributing to both mean and variance TT.

398 to reach the fixed depth till a certain value. After this value, all the
porous space is in-
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Comparison TFM-ext - Hydrus 1D (1/3)
Hypothesis:
1. Constant flux boundary conditions (constant net precipitation)
2. Passive solute
3. Constant depth at 150 cm 

46 soil profiles in Valle Telesina (200 km2)
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The mean TT estimated with TFM-ext were then compared with those
obtained from the physically-based model Hydrus 1D. Two distinct
applications were performed, as detailed described in the following
Table.

Comparison TFM-ext - Hydrus 1D (2/3)
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The results of the comparisons were very good, with high correlation
coefficients ( r > 0.8), mean absolute errors of 30 and 40 days and
percent bias of 20% and -16%, in the constant and variable flux
cases, respectively.

Comparison TFM-ext - Hydrus 1D (3/3)
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TFM

Landtake

Forestry
model

Armosa

model

The model was implemented as a Java application within the
GeoSpatial Decision Support System LandSupport
(https://www.landsupport.eu).

Preliminary application: Valle Telesina (1/2)

https://www.landsupport.eu/
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Preliminary application: Valle Telesina (2/2)
The Figure shows the results obtained for the spatial application to
the Valle Telesina. The mean travel times are categorized in six
intervals from 80 (red) to 440 (green) days.
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Conclusions
Ø The Extended Transfer Function Model is easy to implement and to

interpret;

Ø The model requires few input data and parameters, therefore it

could be used at large scales;

Ø Good results were obtained for the Valle Telesina (IT) compared to

a physically based approach (Hydrus)

Ø The model is easily expandable, considering different types of

solutes

Ø The model is going to be used for the territorial scope for

vulnerable areas.



24

Principal references
• Bancheri, M., Coppola, A. & Basile, A. (2020), Estimating solute travel times in layered

soils using an extended transfer function model, manuscript submitted to Water 
Resources Research.

• Basile, A., Buttafuoco, G., Mele, G., & Tedeschi, A. (2012). Complementary tech-niques to 
assess physical properties of a fine soil irrigated with saline water. Environmental Earth 
Sciences, 66(7), 1797-1807

• Coppola, A., Dragonetti, G., Comegna, A., Zdruli, P., Lamaddalena, N., Pace, S., & De 
Simone, L. (2014). Mapping solute deep percolation fluxes at regional scale by 
integrating a process-based vadose zone model in a monte carlo approach. Soil Science 
and Plant Nutrition, 60(1), 71-91.

• Jury, W. A. (1982). Simulation of solute transport using a transfer function model. Water 
Resources Research, 18(2), 363-368.

• Scotter, D. & Ross, P.: The upper limit of solute dispersion and soil hydraulic properties, 
Soil Science Society of America Journal, 58, 659–663, 1994.

• Zhang, R. (2000). Generalized transfer function model for solute transport in 
heterogeneous soils. Soil Science Society of America Journal, 64(5), 1595-1602.



Marialaura Bancheri

marialaura.bancheri@isafom.cnr.it


