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* The pore size and geometry, as well as their connectivity determine the
permeability and preferred permeability direction.

* X-ray micro-tomography (XRCT) is a widely used technique to generate
digital rock models, visualize and quantify pore shape and size distributions,
and the connectivity of pores with a spatial resolution on the order of 10 . Mon
microns. O Individual data

* Magnetic pore fabrics (MPF), obtained by impregnating ferrofluid prior to () 95% confidence

measuring anisotropy of magnetic susceptibility could be complementary Bootstraplpl).ed t%tal shape S'rn::alifiiogf;::;ff;!:y
to existing techniques and capture smaller pores. POl P-U 1 o e o o Total shape ellipsoid o
* This study is aimed at quantitatively analyzing relationships between pore kl=max eigenvalue; o>, P vl measuroments
fabric or permeability anisotropy and MPF. k2=intermediate eigenvalue; =+ Mean MPF
P = k1/k3, anisotropy degree; %, B
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* Plio-Pleistocene calcarenite (Apulia, Italy) with ~50% porosity, ~300 um * Checking for consistency of pore shape in three perpendlcular cores
average equivalent diameter of pores and complex pore structure. | Sfamples d.””e‘.j Comparlson.on |
* Upper Marine Molasse sandstone (OMM, Belpberg, Switzerland) with 5- in different directions total shape ellipsoid
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* Impregnation by vacuum and fifteen-directions measurement scheme to S o Nermed'ate
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[ 4. Summary }

5 = * Orientation density functions of maximum and minimum pore axes are
X =5 affected by resolution artefacts unless smaller pores are filtered out.
X = L . . .
A 5 * Total shape ellipsoid reflects preferred orientation of pore shape, and is
g g largely unaffected by artefacts related to unresolved pores.
P * Permeabilities can be simulated from the XRCT data, but can be still
Q . . o o . .
5 . improved in accuracy and need verification against measurements.
= 25 * The orientation of the MPF maximum axis correlates with the maximum
\o) Son
X £ dimension of the mean shape ellipsoid at 95% confidence.
— 5 3 . .
Al S * The MPF anisotropy degree is generally smaller than that of the total shape
Q
S ellipsoid.




