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Forest cover

Forest change 

post-loss land cover 
A decent level of mapping but few advances for monitoring

Supports national plans of payments for forest conservation schemes (SGD 15) and climate 
mitigation (SDG 13)

Contributes in modelling policy and planning scenarios for (agro)ecosystems management 
(zero-deforestation supply chains) and conservation (deforestation pathways) in tropics

Why land cover information over deforested areas (so-called post-loss LC) ?

EGU2020: Sharing Geoscience Online, 4–8 May 2020
Multi-temporal mapping of pantropical post-loss land cover using 
dense earth-observation time series and global pre-existing maps
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Aims and objectives

To predict post-loss LC over deforested areas as detected by Terra-i, an 
early warning system of pantropical forest change providing alerts every 

16-days from 2004 to present at spatial resolution of 250-m.

● O1: Assessing a supervised deep neural network model suited to extract 
spatio-temporal patterns from dense earth observation time series data 
according to different labelled datasets representing different number of 
LC classes and complexity.

● O2: Comparing results of the best suited labelled datasets for the model 
against a regional-tuned LC dataset for the period 2001-2017.



Fig 1. Adapted scheme of the MTLCC model assessed within this work. Tunable hyper-parameters are the number of layers 𝑙, 
number of recurrent cells 𝑟 and the sizes of the convolutional kernel 𝑘𝑟𝑛𝑛 and the classification kernel 𝑘𝑐𝑙𝑎𝑠𝑠. Original source: 
Rußwurm and Korner (2018). 

A General Recurrent Unit
(GRU) cell

where:
input (xt)
States: previous (ht-1) and 
current (ht)
update gate (ut)
reset gate (rt)

A supervised deep neural network learning model
The Multitemporal Land Cover Classification (MTLCC) Network 

https://doi.org/10.3390/ijgi7040129


Surface reflectance:
● MOD09Q1 (v6) TERRA , 8-d, 250-m, 2 bands (red, NIR)
● MOD09A1 (v6) TERRA , 8-d, 500-m,  5 bands (blue, gren, SWIR1, SWIR2, 

SWIR3) > downscaled to 250-m (bilinear interpolation)

Time information:
Day of the year (DOY) extracted from satellite images

Why MODIS?
● Long-term records (2000 onwards), 46 observations by year
● Match with the spatial resolution of the reference deforestation 

product, Terra-i (250-m)

Model inputs
Dense earth-observation time series (x)



Model inputs
Labels (‘ground-truth’) (y)

Only for comparison (O2)

5 datasets derived from a 
common year (2015) of 5 
pre-existing global LC 
products (IDs 1-5 in the 
table) with a native spatial 
resolution ranging from 100 m 
to 500 m. 

Remaining datasets called 
‘hybrid’ (4 in total) were  
generated by exploiting 
temporal (ID 3) spatial (ID 5), 
and semantic (ID 3 to 5)  
properties of the pre-existing 
LC products



Model inputs
Description of the hybrid datasets (4 in total) derived from global LC products

Spatial (1) Temporal (2)Semantic/Spatial (1)
C9* dataset exploits the subpixel 
information offered by the 
CGLS-LC100 dataset. 

It reflects small-scale 
disturbances which are mislead 
in the resampled CGLS-LC100 
dataset from 100-m to 250-m.

Based on the proportion of 
Closed forest pixels computed at 
the extent of MODIS 250-m.

Replaced a given fraction of 
Closed forest with the 
predominant non-closed forest 
class per pixel.

O8* dataset refers to the 
integration of three LC global 
products (i) MODIS FAO-LCCS2 
(N=11); (ii) ESA FAO-LCCS (N=37) 
and (iii) CGLS-LC100 FAO-LCCS 
(N=22).

Map legends were harmonized to 
eight general LC classes. 

Reclassified maps were 
overlapped.

Pixels which do not overlap in all 
three datasets were classified as 
NoData.

2001-2015 MODIS IGBP (M17*), 
2001-2015 MODIS FAO-LCCS2 
(M11*) datasets exploit pixels 
with LC types that had not 
changed from a considerable 
length of time.

This particular procedure was 
only applied for two out of three 
LC schemes in the MODIS Land 
Cover Type product (2001-2018)

Only the stable pixels from 2001 
to 2015, which end year matches 
with the year of analysis of this 
work, were considered.



Single year performance evaluation (O1) 
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Cross-year performance evaluation of promising models (O2) 
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Software and Implementation

Satellite data and LC products acquired from Google Earth Engine
Configuration of the MTLCC model > ‘trial and error’ (Coca-Castro et al., 2019)
● Batch size of {32}
● Layers - l: {1}
● Recurrent cells (GRU) - r: {64}
● Trained over 30 epochs on data of 2015

Models’ performance assessed over validation split by year
Metrics: traditional metrics (e.g. overall accuracy, recall, precision, f-score), and 
others with land change and remote sensing research foci (e.g. kappa, 
disagreement metrics)

● Modified source code from Rußwurm and Körner (2018)
● Models built with Tensorflow v.1.7.0. 
● GPU processing (Tesla M60, 16GB DDR5)

https://ieeexplore.ieee.org/abstract/document/8899114/
https://github.com/TUM-LMF/MultitemporalLandCoverClassification


The study area: The Amazon as defined by RAISG
Visualisation of the study area and a labelled dataset (MODIS IGBP - 17 LC classes) for 2015

https://www.amazoniasocioambiental.org/en/


Data preparation (partition) and distribution
Data partition (train, test and eval - 4:1:1)

Block size = 384 px x 384 px
Model trained using 24 px x 24 px

MODIS satellite 
observations 
from a single 
year, 2015, were 
used to create 
pairs (input & 
labels) to train 
and evaluate the 
performance of 
the model. 

Why?
This is a common 
year between all 
pre-existing LC 
products used

Block-wise spatial design yielding:
177 train blocks
45 validation blocks
45 test blocks



Results
Single year (2015) performance evaluation - Quantitative

*

*
*

Table 1. Averaged values (± one standard deviation) of pixel-wise accuracy metrics 
over five folds of the MTLCC network model trained with target datasets. Models trained using hybrid datasets 

(*) performed better than the original. 

The hybrid dataset MODIS/ESA/CGLS 
(O8*) returned the highest overall 
accuracy, 92.35±0.48 over the 45 test 
tiles. Other hybrid datasets related to 
multi-year stable pixels from MODIS 
dataset, 2001-2015 MODIS IGBP 
(M17*) and 2001-2015 MODIS 
FAO-LCCS2 (M11*) provided a notable 
gain in OA compared to the original 
datasets. 

The spatial-based hybrid C9* dataset 
yields good results against C22. 

*



Results
Single year (2015) performance evaluation - Qualitative top 3 datasets (O8*, M11*, C9*) 

O8* M11* C9*

M11*

O8*

C9*

Fig 1. Per-class F1-score of top 3 datasets Fig 2. Labels (ground-truth) and predictions per dataset



Results
Cross-year evaluation across 7 test tiles distributed over MODIS scenes in the AOI

This section presents a visual inspection 
of the spatio-temporal consistency of the 
LC predictions by the trained models 
using C9* and M11* datasets across 17 
years of MODIS imagery.

Only annual LC data was observed in a 
single deforestation year, in this case the 
peak year of Terra-i’s deforestation data 
from 2004 to 2010, per sampled tile.

The analysis over three out of seven 
sampled tiles, which shows contrast in 
clearing sizes and locations across the 
study area, is presented as follows.

Fig 1. Distribution of the sampled tiles (★) for the cross-year evaluation.



Results
Tile h12v10: large area clearings in the eastern Amazon

Fig 1. Subset of 2001-2017 annual LC extracted from the MapBiomas 
dataset and predictions by the MTLCC network trained using C9* and 
M11* datasets. The peak deforestation year is highlighted in bold.



Results
Tile h10v08: small area clearings in the northwest Amazon

Fig 1. Subset of 2001-2017 annual LC extracted from the MapBiomas 
dataset and predictions by the MTLCC network trained using C9* and 
M11* datasets. The peak deforestation year is highlighted in bold.



Results
Tile h10v09: small area clearings in the western Amazon

Fig 1. Subset of 2001-2017 annual LC extracted from the MapBiomas 
dataset and predictions by the MTLCC network trained using C9* and 
M11* datasets. The peak deforestation year is highlighted in bold.



Conclusions
● The capability of the MTLCC model in predicting LC using dense earth-observation 

time series at a spatial resolution of 250-m, is influenced by characteristics of the 
training dataset (size, number of classes, labels noise). 

● Hybrid datasets yielded better performance than original LC products.
● A visual inspection of the predictions corroborated the hybrid datasets C9* and M11* 

datasets as having a better generalization than the O8* hybrid dataset.
● The trained MTLCC models using the C9* and M11* datasets were spatially and 

temporally consistent in a tile with large-area disturbed sites but were unable to 
capture possible LC sequences in tiles with small-area disturbances.

● The MTLCC network trained with C9* provided coherent spatio-temporal predictions 
for the study of post-loss LC > partially explained by the level of detail provided by 
native spatial resolution of the C9* (100-m).

● M11* still offers a greater suitability for mapping post-loss LC change trajectories > 
noisy labels are reduced by using the temporal attributes of its original dataset.
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