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THE 1IDEA

Can the history of lake records covering the
glacial-interglacial cycles be reconstructed from
downhole logging data without the high-resolu-
tion data derived from core analysis?

The response of depositional environments to
the climatic variations is periodic in time and
these climatic variations are embedded on sedi-
ments and recognized as variation in their
physical properties (e.g. grain size, mineral
type, mineral abundance especially for clay, or-
ganic matter), which are also detected by
downhole logging measurements. The sedi-
mentary record is a function of depth, so that in
case the long-term rate of sediment accumula-
tion is rather constant, then the variation of its
physical properties with depth (expressed as
cycles/meter) will approximate their variation
with time (expressed as cycles/million years).
The spectral analysis method can greatly en-
hanced the understanding of possible relation-
ships between sedimentation rate, and climate
patterns of the past with the present.

an example from the ICDP drilling project Lake Junin, Peru.
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Can the presence or absence of clay minerals
help to recognise glacial/interglacial climate cy-
clicity?

Selected sixty-eight samples were taken in
order to compare and characterize the minerals
in the lake sediments at different depths. The
mineralogical analyses performed by X-ray dif-
fraction (XRD) show the composition of each
sample. Linking the abundance and the lack of
clay minerals in core samples with the down-
nole logging data, a relationship between geo-
ogical history of the lake and climate change
Drocesses can be recognized. Consequently, the
different mineralogical composition of the sedi-
ments, especially the presence or absence of
smectite in the clay bulk, reflects a
glacial/interglacial climate cyclicity.
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' Lake Junin is located at 4082
m above sea level in the
Andes and is the largest lake
(300 km?2) entirely within Pe-
ruvian territory. Lake Junin is
controlled by a thick sedi-
ment package (>125 m)
dominated by alternating
packages of carbonate and
glaciogenic silts with thin
peat and organic-rich mud
layers. The lake predates the
maximum extent of glacia-
tion, and is in a geomorphic
position to record the waxing
and waning of glaciers in the
nearby Cordillera. Bedrock
consists primarily of Paleozo-
5\ . | ic-Mesozoic marine carbon-

T g e % | ates, with some exposure of
. | pre-Cambrian crystalline sili-
f\;f’o_jkm cate rocks along the eastern

A) Map of Junin Plain and adjacent

cordillera. The lake owes its

mountains, showing distribution of  B) Lake Junin and its drainage basin. origin to >250-ka-aged co-

glacial features. Limits of the older Dashed line is the watershed boundary.
(Rio Blanco) and younger (Punrun) The white stars indicate the three drill

alescing glacial outwash fans

phases are on the west side of the sites (modified by Rodbell et al., 2012). that dam the northern and
plain (modified by Wright, 1983; The water depth of the Lake Junin is southern ends of the lake,

Smith et al., 2005a,b)). shown.
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MINERALOGICAL COMPOSITION
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C) Stratigraphic profile at Lake Junin drill site 1. Pink and green co-
lours show the glacial and interglacial periods. the glacial period is
marked by low calcite and TOC but high MS and density. interglacial
periods are marked by high calcite and TOC but low MS and density
values (Sherpa, 2018 and Rodbell et al., 2018). TOC: total organic
content; MS: magnetic susceptibility;, CaCO3: calcite. The measure-
ment have been carried out on drill core.

CORE CLAY-MINERALOGY
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D) Comparison of semiquantitative analyses of specific

clay minerals in selected core samples of hole 1D. A
correlation can be detected, reflecting glacial and inter-
glacial periods. Interglacial periods are marked by high
calcite intensity, and low quartz, and clay minerals. Gla-
cial periods are marked by low calcite intensity and an in-

crease of clay minerals, chlorite and quartz.

CYCLOSTRATIGRAPHIC ANALYSIS
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Investigating glacial/interglacial cyclicity from downhole logging data and mineralogical composition:
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CLUSTER ANALYSIS

BULK-ROCK-MINERALOGY
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E) Quantitative XRD analysis of the bulk rock min-
eralogy in hole 1D

L) (a) Evolutive harmonic
analysis suggests no major
shift in sedimentation rate in
the interval from ~30-90m.
(b) Filtering of the ~10 m

component (frequency range:

0.08-0.

and 20

12, roll-off rate 103)
suggests 6 prominent cycles
and less clear cyclicity at the
top and base of the dataset.
(c) Results from the Average
Spectral Misfit suggest sedi-
mentation rates between 5

cm/kyr.

(d) Time Opt results for the
dataset excluding the upper 20
m; a best fit is achieved for a
sedimentation
cm/kyr.

(e) Relative time scale for the
dataset excluding the upper 20

m based on the comparison of

rate of ~15
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F) Four dowhnole logging
measurements have been
taken into account for the
cluster analysis: potas-
sium (K), uranium (U),
thorium (Th) and mag-
netic susceptibility (MS).
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precession amplitude and ec-
centricity (TimeOpt).

For these
Meyers software

analyses the

(2014) and

approach (2015, 2019) have
been used.
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