

DEGLI STUD

B | C O C C A

Aggregates and naturally occurring asbestos: the need of a correct analytical approach

Gavallo Alessandro

University of Milan-Bicocca, Dept. of Earth and Environmental Sciences - Milano, Italy. alessandro.cavallo@unimib.it

Aggregates...

• Sand & gravel used to make concrete, asphalt, roads, blocks & bricks...

- Every year each person (including babies) uses more than 4,500 kg of aggregates!
- In the US, 1.33 billion tons of crushed stone valued at more than \$15 billion was produced by an estimated 1,400 companies operating 3,700 quarries and 187 sales/distribution yards in 50 States.

Aggregates...

The most common suitable rock types are:

- carbonatic rocks
- basalts
- porphyries
- orthogneisses
- granites
- "green stones"

"Green Stones"...may contain asbestos!

Rock type	Main rock-forming minerals
Serpentinites	Atg, Ol, Cpx, Opx, Tlc, Mag, Chr, <u>Ctl</u> , <u>Tr</u> , (Dol), Grt)
Prasinites	Pl (Ab), Ep, <u>Tr – Act</u> , <u>Gln</u> , Cpx, WM
Eclogites	Cpx, Grt, Rt, <mark>Gln</mark>
Amphibolites	Pl, Hbl, Ep, Chl, <u>Ath – Ged</u>
Actinolitic schists	Act, Tlc, Chl, Ep, Ol
Tl, Chl and Srp schists	Tic, Chi, <u>Tr – Act</u> , Srp, Cti, Dol, Rt, Ttn, Grt
Ophicalcites	Atg, Ol, Cal, Dol, Tlc, <u>Tr</u> , <u>Ctl</u>

Asbestos

Mg₃Si₂O₅(OH)₄

 $Ca_2Mg_5Si_8O_{22}(OH)_2$

(Mg, Fe)₇Si₈O₂₂(OH)₂

(Fe, Mg)₇Si₈O₂₂(OH)₂

Ca2(Mg, Fe)5Si8O22(OH)2

DATE: 08/29/13

n. CAS 12001-29-5 n. CAS 77536-68-6 n. CAS 77536-66-4 n. CAS 77536-67-5 n. CAS 12172-73-5 n. CAS 12001-28-4

Chrysotile Tremolite Actinolite Anthophyllite Grunerite (amosite) Riebeckite (crocidolite)

Actinolite DET: BSE Detector

IV: 20.0 kV DATE: 07/29/13 100 um Device: TS5136XM

Some "dirty" green stones

The starting point? The quarries!

The importance of a representative sampling → consider lateral and vertical facies variation, relative abundances of different lithologies, grain size, planar and linear anisotropies...

Detailed preliminary geological investigations needed:

- source rocks?
- Fine fraction? Sand and silt?
- Facies variations?

Asbestos quantification: analytical techniques suggested by law

Legal threshold 0.1 % wt. – 1000 ppm

NO!

- LOD ≈ 0.5 1.0% wt.
- Interferences (polymorphs)
- NO information about crystal habit

Step 1: macroscopic petrographic description

- How many "green stones"?
- Visible fibers?
- Preliminary evaluation with portable Raman!

Step 2: sample preparation (gravel)

Step 3: qualitative and quantitative XRPD

- main rock-forming minerals (LOD $\approx 0.5 1\%$ wt.) of bulk samples
- RIR (Reference Intensity Ratio) and Rietveld method for quantitative analysis
- Rietveld method is effective in the discrimination between Ctl and Atg only in high-grade

samples (> 2% wt.) - Gualtieri et al., 2014.

Step 4: quantitative SEM-EDS

• optimized sample preparation and fiber counting criteria for NOA (*Cattaneo et al, 2012; Cavallo & Rimoldi, 2013; Gualtieri et al., 2014; Gualtieri et al., 2018*).

• report ALL fibers, regulated and non regulated!

$$C = [A \frac{(w_c + w_a)}{n \ a \ W}] 10^{6}$$

C = fiber concentration (mg/kg = ppm); $A = \text{membrane area (mm^2);}$ $w_c = \text{total weight of chrysotile fibers;}$ $w_a = \text{total weight of amphibole fibers;}$ n = number of examined fields under SEM; $a = \text{area of the single examined field (mm^2);}$ W = sample weight on the membrane (mg).

Chrysotile vs. "fibrous" antigorite

Asbestiform and non asbestiform tremolite

Conclusive remarks

highly variable lithological and mineralogical composition. Serpentinites are critical for chrysotile!

Asbestos content

238 samples out of a total of 457 contain asbestos, mainly chrysotile, range 65 – 7300 ppm. 35 samples exceed the legal threshold of 1000 ppm!

«self-crushing» powders have a systematically higher asbestos content than bulk samples.

Asbestiform tremolite relatively rare, asbestiform actinolite uncommon.

Future challenges

- HR μ-Raman spectroscopy for quantitative analysis?
- Fibrous zeolites (e.g. erionite) from volcanic rocks!
- The future legal threshold will be only **100** ppm?

