Mechanisms of Shuttling Organic Matter (OM) Through Sulfidic Sediments of the **Saint Lawrence Estuary**

Background

- The biogeochemical cycles of S, OM and Fe are intimately linked in sediments through the formation of iron-sulfur complexes.
- Oxide minerals sorb and sequester OM e.g. the "iron shuttle"¹; an estimated 0.15 $\times 10^{18}$ g carbon resides in marine sediments² alone.

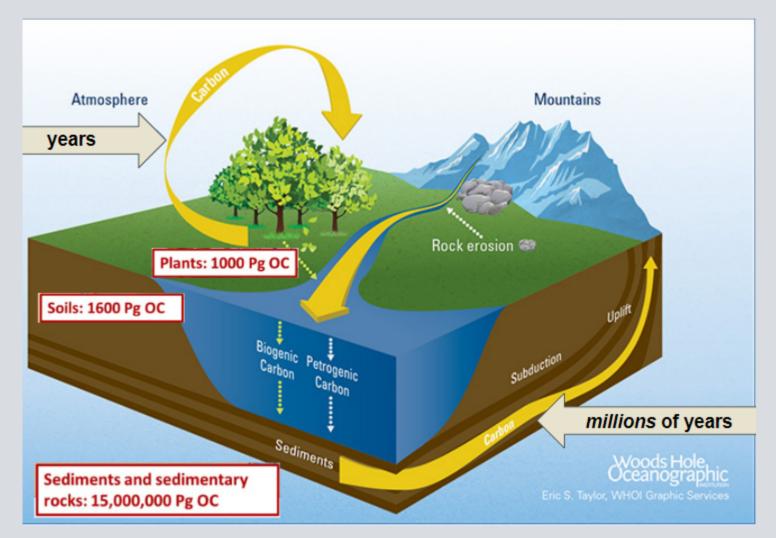
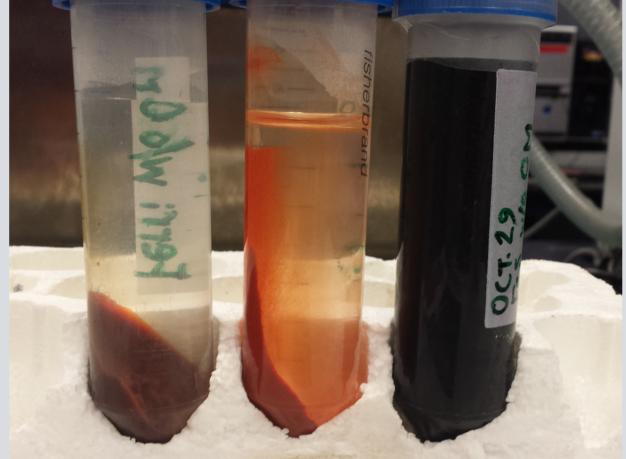


Fig. 1: Magnitudes and approximate residence times of Earth's organic carbon (OC) reservoirs^{3,4}

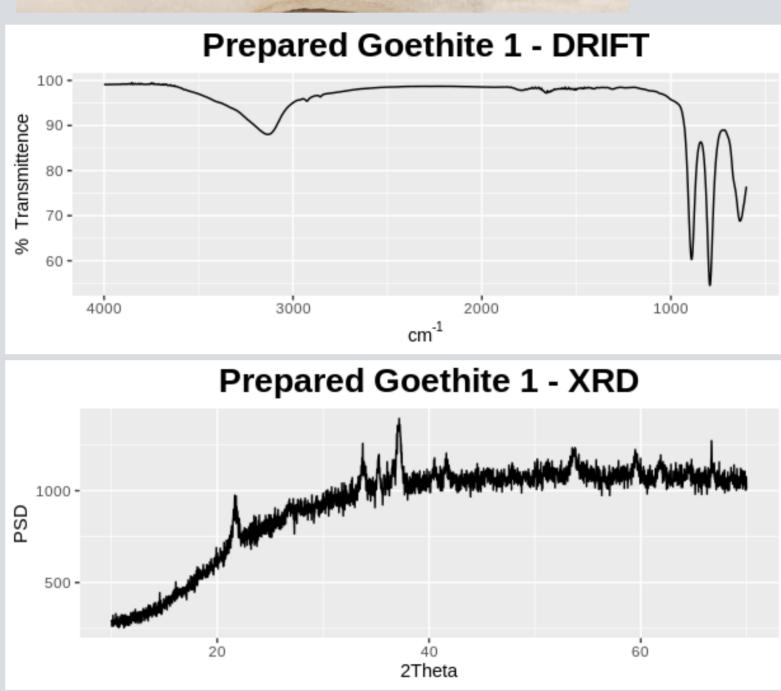
- Mackinawite (FeS) may play an active role in • sedimentary OM preservation, analogous to that of iron oxides.
- The mechanisms of transport of OM sorbed to iron minerals across the redoxcline are still poorly understood.

Fig. 2: Sediment sampling site: Quebec, Canada

Concentration \rightarrow $Fe^{2+} + MnO_2 \rightarrow Fe^{3+} + Mn^{2+}$ $Fe^{3+} + H_2S \rightarrow Fe^{2+} + S_8 + S_8^{-2-}$ SO.2- $Fe^{2+} + H_2S \rightarrow FeS_{sq} + 2 H^+$ FeS_{sq} + $\operatorname{S}_{g}/\operatorname{S}_{n}^{2}$ \rightarrow FeS_{2} + $\operatorname{S}_{n-1}^{2}$ H,S $FeS_{sq} + H_2S \rightarrow FeS_2 + H_2$

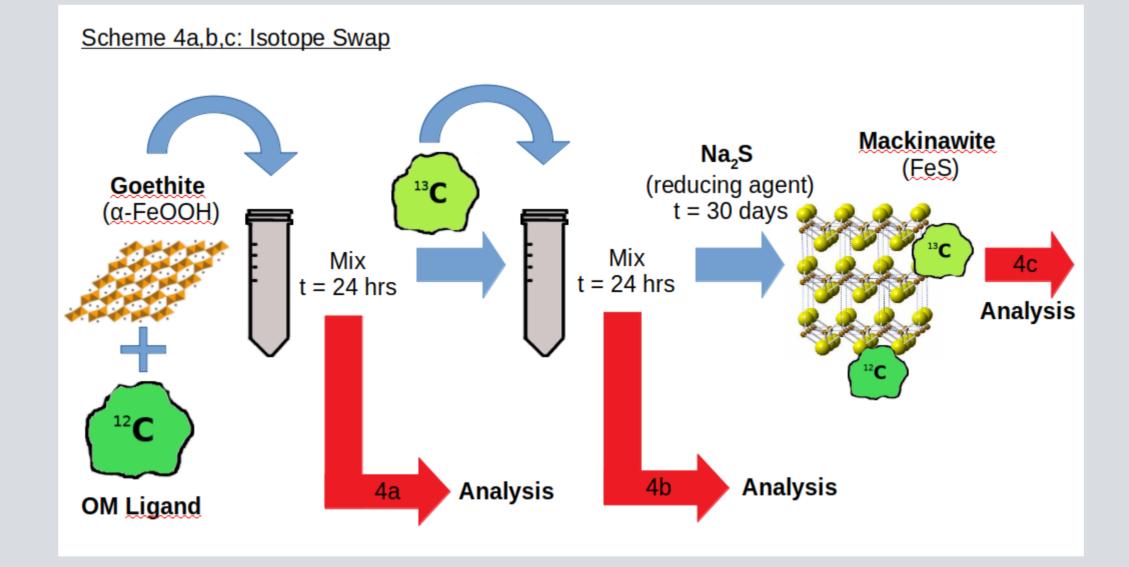

Reducing Environment Fig. 3: Sediment core from SLE (*left*); idealized sediment redoxcline (*right*)⁵

Alexandre Tétrault & Yves Gélinas Chemistry and Biochemistry Department, Concordia University, Montreal, Canada


Methods and Results

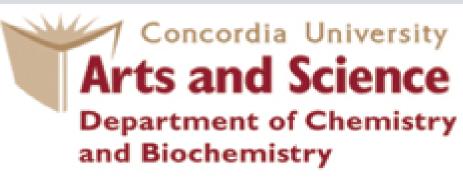
(I) Artificial Redox Cycle of Fe

A model Fe redox shuttle has been developed:



- ► Ferrihydrite Fe(OH)₃
 - ► Goethite α -FeOOH
 - Mackinawite FeS

Methods and Results


(II) OM Competitive Displacement Scheme

(III) Shuttling OM across the redoxcline via Fe^{III}/Fe^{II} Exploratory data by EA-IRMS:

Phase/Ligand	Average %OC ¹	S
Ferrihydrite/Catechol	9.66	0.13
(cycle to Goethite)	8.72	0.19
(cycle to Mackinawite)	Failed to precipitate	
Ferrihydrite/KHP	6.08	0.37
(cycle to Goethite)	5.73	0.16
(cycle to Mackinawite)	0.60	0.02
Ferrihydrite/Salicylate	3.06	0.21
(cycle to Goethite)	1.47	0.04
(cycle to Mackinawite)	0.91	0.11

¹Initial Fe:OC in solution adjusted to 1:1; n = 3

Research Goals

To investigate the mechanism(s) of the iron shuttle for organic matter across the sediment redoxcline by:

- Characterizing Fe solids across an artificial redox shuttle via XRD, Raman and FT-IR spectroscopy
- Using model organic ligands (aromatic and aliphatic counterparts) as sorbates demonstrating a gradient of Hard Soft Acid Base (HSAB) properties
- Following sorption of ligands across Fe phase transitions via Elemental Analysis – Isotope Ratio Mass Spectrometry (EA-IRMS) and ¹³Clabeled ligands

in order to answer the following questions:

- Does iron oxidation state affect types/quantities of sorbed OM in sediments?
- Is there potential for desorption or competitive displacement of ligands bound to Fe^{III} during reduction to Fe["] in marine environments?

Preliminary Conclusions and Next Steps

- Fe^{III} sorbs Catechol > Phthalate > Salicylate in agreement with the literature.
- Loss of sorbed OM observed for KHP & Salicylate upon reduction to mackinawite.
- Catechol inconclusive but failure to precipitate suggests reductive dissolution mechanism.
- Next steps include running iron shuttle schemes (e.g. see Scheme 4) for 30 days to obtain data.
- Future analysis of minerals by Transmission Electron Microscopy (TEM).

References

- A. Barber, J. Brandes, A. Leri, K. Lalonde, K. Balind, S. Wirick, J. Wang, Y. Gélinas (1)(2017). Preservation of organic matter in marine sediments by inner-sphere interactions with reactive iron. *Scientific Reports*, 7: 366-381. (2) S. Emerson and J. Hedges (1988). Processes controlling the organic carbon content
- of open ocean sediments. Paleoceanography, 3: 621-634. Woods Hole Oceanographic Institution. https://www.whoi.edu/ (accessed Feb 04, (3)
- 2020).
- J. Hedges, and R. Keil (1995). Sedimentary organic matter preservation: an (4) assessment and speculative synthesis. Marine Chemistry, 49: 81-115.
- D. Rickard and G. Luther (2007) Chemistry of Iron Sulfides. *Chemical Reviews*, 107, (5) 514-562.

Financial Support:

FOR INNOVATION

Concordia University **Arts and Science Department of Chemistry (i)**