
Plant growth in grasslands is sensitive to both air temperature and
water availability. Many studies based on ground records and satellite
observations have revealed that over the past several decades,
preseason temperature increases have prompted significant advances
in spring phenological events in grassland vegetation (such as
greenup date and growing season start date). However, when water
supply is short in a location, increasing temperature may have no
significant effects on grassland spring phenology. This means that
water supply also plays a critical role in regulating phenological
changes for herbaceous plants and enough water supply usually
facilitates plants to grow earlier under suitable heat conditions,
especially in arid and semi-arid places. Meanwhile, several studies
reported that increasing precipitation had no significant effect on
flowering dates in two temperate grasslands of North America, while
reducing water supply resulted in an earlier greenup and flowering
date of herbaceous species in some field experiments. In alpine, high-
latitude, and temperate regions covered by snowfall in non-growing
season, spring phenology of non-woody plants has also been linked
with the snow melting date, the snow cover duration, and the amount
of snow. The effects of snowfall on grassland spring phenology was
also detected to be vegetation type and location dependent in a
Tibetan Plateau. Therefore, the response of spring phenology of
grassland vegetation to climatic variables is complex and still
controversial. It’s urgent to elucidate the responses of grassland
spring phenology to climate change and their possible spatiotemporal
differences at continental scale.

Compared with spring phenology, autumn phenology has been
relatively less well investigated in phenology-climate interaction
studies. But autumn phenological events are of great importance in
determining the growing season length and controlling carbon and
energy exchange. As reported, increasing temperature in preseason
has led to an extensive delay of autumn phenological activities for
woody plants. Besides temperature, autumn phenology of grassland
vegetation could be also significantly influenced by previous
precipitation, as shallow-rooted herbaceous plants are susceptive to
the timing of rainfall in autumn. But the roles of previous temperature
and precipitation in controlling autumn phenology of grassland
vegetation differ among diverse species and grassland types in varied
spatial scales. Based on the correlation between satellite-derived
growing season end dates and air temperature and precipitation at 56
meteorological stations of the Inner Mongolia grassland, Ren et al.
(2017) found precipitation was a more important factor in regulating
autumn phenology of grassland vegetation than air temperature. But
their further work at the region scale revealed an overall dominance
by control of air temperature on the dynamics of growing season end
date of grassland vegetation, though a decisive effect of precipitation
was detected in desert steppe. The decisive role of temperature in
determining autumn phenology of grassland vegetation was also
reported by other studies in frozen ground regions of Mongolia and
temperate grassland over China. The above studies suggest a vital
role of grassland autumn phenology in vegetation-air interactions but
complex responses to climate change. However, our knowledge of
the controls regulating autumn phenology of grassland ecosystems at
global scale is still limited.

In this study, we investigated temporal patterns of spring and autumn
phenological events of plants and their climatic controls across mid-
latitude (30°N~55°N) grasslands of the Northern Hemisphere. The
specific questions addressed are as follows: (i) How have the SOS
and EOS of grassland vegetation changed from 1981 to 2014? (ii)
How do the SOS and EOS of grassland vegetation respond to
changes in temperature and precipitation? (iii) Is there a spatial
pattern in the response of SOS and EOS to climatic factors among
global grasslands?
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Introduction Data and methods

Remote sensing data and processing

A NDVI data product (1981-2014), that combined AVHRR (1981-

1999) and MODIS (2000-2014) datasets by standardizing AVHRR

to the same level with MODIS, was used to calculate SOS and EOS

from 1981-2014. This product was previously released by

Vegetation Index & Phenology Laboratory at the University of

Arizona (https://vip.arizona.edu/viplab_data_explorer.php) and has
a spatial resolution of 0.05° and temporal interval of 7 days. In

order to obtain high-quality NDVI time series, we first determined

the background NDVI value (uncontaminated by snow and clouds)

within the vegetation dormancy period at each pixel based on

MODIS land surface temperature (MOD11C2, 2000-2014). Next,

we took the average of the upper 50% of NDVI values within the

vegetation dormancy period as the background NDVI. The

envelope line of entire NDVI time series was then obtained based

on a modified Savitzky-Golay filter. Finally, we fitted the

reconstructed NDVI time series with a double logistic function,

which has been demonstrated to be particularly well suitable to

extract phenological parameters from remote sensing data. SOS and

EOS were computed based on the maximum curvatures of the fitted

curve at each pixel. The following figure illustrates of NDVI

processing and SOS/EOS extraction. The length of the growing

season (LGS) was defined as the duration from SOS to EOS.

Statistical analysis

The gridded WATCH-Forcing-Data-ERA-Interim (WFDEI) data
were used to analyze climatic effects on temporal patterns of SOS
and EOS. We performed a time-window analysis in each grid cell
by using the climwin R package, with the aim to explore the best
periods for climatic factors affecting grassland vegetation
phenology. First, this method constructed a baseline linear model
by fitting phenology time series to only “year” variables. In this
step, a base Akaike Information Criterion (AICc) value was
obtained. Second, linear regression models were established
between SOS/EOS and each climatic factor (i.e. mean air
temperature, cumulative rainfall, and cumulative snowfall (only
for SOS)) in any time window from the predefined reference date
to a certain number of days before the reference date. All model
AICc values were then compared to the based AICc and the time
window with the biggest reduction (ΔAICc) in AICc was
identified as the best-performing time window. Third, by applying
the same time-window analysis to a number of randomizations of
the original climate data, the probability statistic Pc value (0~1)
could be calculated to assess whether such a ΔAICc value for the
identified best time window was obtained due to chance.

Results

A dominated negative correlation between air temperature and

SOS was found in 62.4% of the effective areas (19.8% of the

whole study region), which was primarily located in the North

American Grasslands and the Mongolian Grasslands (Fig. 2-3).

On average, if mean air temperature within the best time-window

increases by 1°C, SOS would happen 0.85 days in advance.

Meanwhile, a dominant and negative correlation was also

diagnosed between rainfall and SOS in 57.6% of the effective

areas (9.7% of the whole study region). 1 mm increase of the

total rainfall over the best time-window would lead SOS to occur

earlier by 0.36 days. Additionally, we detected a significant

positive effect of snowfall on SOS in the majority part of the

North American Grasslands and the Mongolian Grasslands but a

significant negative effect on SOS in the most part of the Middle-

West Asian Grasslands.

EOS was found to be significantly negatively correlated with air

temperature in 74.8% of the effective areas and significantly

positively correlated with precipitation in 83.7% of the effective

areas. On average, air temperature within the best time-window

increasing by 1 °C would make EOS appear earlier by 5.4 days;

precipitation within the best time-window increasing by 1 mm

would induce EOS to occur later by 0.34 days.

For 95.2%/76.2%/69.8% of the effective grid cells, the optimal

time window length for the effect of air

temperature/rainfall/snowfall on SOS was limited between 1 and

60 days (Fig. 4-5). But there are also 31% of grid cells showed a

longer time window (90-180 days) for the effect of rainfall on

SOS in the Mongolian Grasslands (Fig. 4-5). Furthermore, we

found that the time window opening date for the effect of air

temperature on SOS was identified as the day 1-90 before the

multi-year average SOS in 76.1% of grid cells, while the time

window opening date for the effect of rainfall/snowfall on SOS

was relatively evenly distributed between the 1st and 180th day

before the multi-year average SOS. For 66.9%/77% of the

effective grid cells, the optimal time window for the effect of air

temperature/precipitation on EOS ranged from 1 to 60 days (Fig.

4-5). The time window opening date for the effect of air

temperature on EOS was identified as the 90-180th day before the

multi-year average EOS in 66.9% of grid cells, while the time

window opening date for the effect of precipitation on EOS was

mainly concentrated on the 60-120th day before the multi-year

average EOS in 51.5% of grid cells.

Conclusion

（1）Air temperature and precipitation exhibited a relatively 

stronger control on SOS and EOS, respectively. 

（2）The influencing time of water conditions on SOS is 

earlier and longer than thermal conditions. 

（3）EOS primarily depends on spring thermal conditions and 

autumn water availability.

Fig. 1. Illustration of NDVI data processing and fitting to obtain the start (SOS) and end

(EOS) of the growing season. The cyan curve is fitted with double logistic function.

Gray dots represent raw NDVI values. Black dots represent reconstructed NDVI data

after processing and smoothing.

Fig. 2. Histogram of the slopes of the best linear models for (a) SOS and (b) EOS.

Fig. 3. Spatial pattern of the slopes of the best linear models for (a) SOS vs air

temperature, (b) SOS vs rainfall, (c) SOS vs snowfall, (d) EOS vs air temperature and (e)

EOS vs precipitation.

Fig. 4. Histogram of the time window durations for (a) SOS vs air temperature, (b) SOS

vs rainfall, (c) SOS vs snowfall, (d) EOS vs air temperature and (e) EOS vs

precipitation.

Fig. 5. Histogram of the time window opening dates for (a) SOS vs air temperature, (b)

SOS vs rainfall, (c) SOS vs snowfall, (d) EOS vs air temperature and (e) EOS vs

precipitation.


