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Area of study

e The Alps are an orogenic system developed

FraNE from the Cretaceous onwards by subduction
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of a Mesozoic ocean and subsequent

collision between the Adriatic and European
continental margins (Dal Piaz et al., 2003).

The stratigraphic sequence of Western Alps
provides an exceptional record of divergent

continental margins evolution.

The Briangonnais Block today mainly covers
the internal areas of the Western Alps

consisting of the eastern Dauphinois, Sub-
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Aim of work
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The Briangonnais domain

homogeneous all over the
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Results
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Does it reflect a thermal subsidence trend?

*4 pRsL Tt The numerical model of McKenzie (1978) considers an
- equal length-thickness block of lithosphere and crust
2- \\ , . & stretched in two stages:
P11 ks
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The stretching factor
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Age (Ma) Age (Ma)
o 20 40 60 80 100 120 140 160 180 200 0 20 40 60 80 100 120 140 160 180 200

500

1000

1500

Subsidence (meters)

Subsidence (meters)

2000

7000 2500

Betall ——Betald4 ——Beta2.0 —— Decompaction Curve Betall ~———Betald4 =——Beta2.0 =———Tectonic Subsidence

Applying the thermal subsidence equation of McKenzie (1978), theoretical and
measured curves show a very good match with = 1.4 for both the water-filled and

sediment-filled basin.
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How thick was the initial and the final crust?
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What happened in the Jurassic?
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In contrast to Triassic evolution of the Briangonnais,
rapid and opposing Jurassic tectonic movements
cannot be explained with the uniform stretching
model of McKenzie (1978). On the contrary, a

guantitative non-uniform model should be applied.
Although this aspect has not been developed in this
the sharp

the

work, we hypothesize

Bathonian/Callovian subsidence of
Briangonnais s.s. is due to the development of a
pull-apart type basin rapidly deepening under the
CCD in Late Jurassic times to the north of the
Briangonnais domain. Many transform movements,
in fact, have been registered between the main
plates since the Jurassic (Lemoine et al., 1986; de

Graciansky et al., 2010; Stampfli et al., 2002).
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