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Complex system : 
A system composed of highly interconnected
components in which the collective property of an
underlying system cannot be described by dynamical
behavior of the individual parts alone.

A typical approach to study the behavior of a
complex system is:
Focusing on the comparably few observed,
macroscopic variables, assuming that they determine
the key dynamics of the system, while the remaining
ones are represented by noise

Stochastic differential equations (SDEs)

Using 
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Consider a system for which the evolution of the macroscopic states x(t) obeys the following equation of 
motion:

The drift F(x,t) and the diffusion G(x,t) can be directly estimated from the measured data without any          
prior knowledge about the internal dynamics of a system using Kramers-Moyal (KM) coefficients.

The numerical discretization of the LE, in Itˆo’s interpretation of stochastic integration, is as follows:

Langevin Equation (LE) :
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Generalized Langevin Equation (GLE) :

It has been proposed to account for long-range correlations and memory effects of complex systems that
do not exhibit strong time scale separation. One pathway to derive a GLE is by means of the Mori–
Zwanzig formalism (MZ) :

The deterministic term can be estimated using KM coefficients and the memory function K(t) can be 
derived from the autocorrelation function  C(t) of the system:

The first, local term defines the self interactions of the macroscopic variables, the second, non-local term
describes memory dependencies of the macroscopic variables, and the last term stands for the residual
force associated with fast variables.
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Empirical Model Reduction (EMR) :

The general form of the EMR approach is as follows:

First, model the increments dx of an observed variable x as quadratic function of x plus a residual dr0 that is
typically obtained from a least-squares minimization yielding the parameters a, b0; and c0:

In the main step, the stochastic residual r0 can be estimated through an iterative linear regression on the
state variable x and residuals in previous steps. This recursive procedure terminates when the state- and
time-correlations of the residual of the nth levels rn+1 vanish.
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Ornstein–Uhlenbeck process  with multiplicative noise: 

Summary statistics (PDFs in the left column and ACFs in the right column) of original and simulated
time series derived from 1000 sample time series reconstructed by the three stochastic models (KM,
MZ, and EMR), from top to bottom as indicated in the legend.

Ornstein–Uhlenbeck process  with colored  noise: 

Here we substitute the stochastic term of the equation
with a first order autoregressive process. 
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Nino-3 monthly SST indices averages from (1891 to 2015) Weekly S&P500 stock index for the time span of 35
years (1950-1985)

Summary statistics (PDFs in the left column and ACFs in the right column) of original and simulated
time series derived from 1000 sample time series reconstructed by the three stochastic models (KM,
MZ, and EMR), from top to bottom as indicated in the legend. 7



A particle moves in a double-well potential
subjected to an additive noise

A particle moves in a double-well potential
subjected to a multiplicative noise
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The high-resolution (20yr-average) Ca2+ (interpreted as a proxy for atmospheric circulation
patterns), collected from the NGRIP ice core on the GICC05 time scale.

Because of the substantially better signal-to-noise
ratio, we focus here on the Ca2+ time series between
60ka and 30ka b2k.

Original (red) and randomly chosen simulated time series
based on KM, MZ, and EMR methods (from top to bottom
respectively). 9



Summary
• In this work we attempt to reconstruct the dynamical equations of
motion of both synthetical and real-world processes, thoroughly
comparing (LE,GLE,EMR) in terms of their capability to reconstruct
the dynamics and statistics of the underlying systems.

• Though we generally observe an appropriate performance of all
approaches for unimodal systems, our results have revealed that the
MZ method exhibits a better performance especially in the case of
modeling ENSO dynamics.

• We propose that due to the memory contribution in real-world
systems, LEs (as derived by the KM approach) cannot fully grasp the
underlying behavior and it is essential to take into account the non-
Markovian closure terms
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