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Complex system :

y Water storage in the atmosphere q‘\ Con
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components in which the collective property of an EHEIEREE = < = E"apo”ajs‘)"a“o"
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behavior of the individual parts alone. ;__ : Evapor:
'melt runoff Surface runoff
. . streams _
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complex system 1s: Fvaperation
Spring o
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macroscopic variables, assuming that they determine storage S Water
the key dynamics of the system, while the remaining s in oce

ones are represented by noise
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Stochastic differential equations (SDEs)



Langevin Equation (LE) :

Consider a system for which the evolution of the macroscopic states x(t) obeys the following equation of
motion:

lx(t
: IIE‘ ) = F(x,t) + G(z, t)n(t),
dt

The drift F(x,t) and the diffusion G(x,t) can be directly estimated from the measured data without any
prior knowledge about the internal dynamics of a system using Kramers-Moyal (KM) coefficients.
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The numerical discretization of the LE, in It"0’s interpretation of stochastic integration, is as follows:

dz(t) = D' (z,t)dt ++/D?(z, t)dw(t)




Generalized Langevin Equation (GLE) :

It has been proposed to account for long-range correlations and memory effects of complex systems that
do not exhibit strong time scale separation. One pathway to derive a GLE is by means of the Mori—
Zwanzig formalism (MZ) :

dx(t)

t
= Qx(t) — / K(t—t)z(t"dt' + R(t,to)
dt :

0

The first, local term defines the self interactions of the macroscopic variables, the second, non-local term
describes memory dependencies of the macroscopic variables, and the last term stands for the residual
force associated with fast variables.

The deterministic term can be estimated using KM coefficients and the memory function K(t) can be
derived from the autocorrelation function C(t) of the system:

dC'(t)
dt

t
- —/ K(t—¢)C{')dt
t

0




Empirical Model Reduction (EMR) :

The general form of the EMR approach is as follows:

First, model the increments dx of an observed variable x as quadratic function of x plus a residual dro that is
typically obtained from a least-squares minimization yielding the parameters a, b°; and c°:

dr = (ax®+b°z+c")dt+dr’

In the main step, the stochastic residual r° can be estimated through an iterative linear regression on the
state variable x and residuals in previous steps. This recursive procedure terminates when the state- and

time-correlations of the residual of the nth levels r**! vanish.
dr® = bz, rOdt + rldt

bz, 7Y, ..., r"]dt + r*T1dt




Ornstein—Uhlenbeck process with multiplicative noise: Ornstein—Uhlenbeck process with colored noise:

5 =0(pn —z(t)) + (1 4+ z*)n(t) Here we substitute the stochastic term of the equation

dt with a first order autoregressive process.
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Summary statistics (PDFs in the left column and ACFs in the right column) of original and simulated
time series derived from 1000 sample time series reconstructed by the three stochastic models (KM,
MZ, and EMR), from top to bottom as indicated in the legend.




Weekly S&P500 stock index for the time span of 35
years (1950-1985)
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Nino-3 monthly SST indices averages from (1891 to 2015)
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Summary statistics (PDFs in the left column and ACFs in the right column) of original and simulated
time series derived from 1000 sample time series reconstructed by the three stochastic models (KM,
MZ, and EMR), from top to bottom as indicated in the legend.




A particle moves in a double-well
subjected to an additive noise
dX(t)

2 _ 0(2(t) — 23(8)) + on(t) axXy) _
dt dt

potential A particle moves in a double-well

subjected to a multiplicative noise

potential

0(x(t) — 23(t)) +v/1 + 22n(t)
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The high-resolution (20yr-average) Ca2* (interpreted as a proxy for atmospheric circulation

patterns), collected from the NGRIP ice core on the GICCo5 time scale.
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Because of the substantially better signal-to-noise
ratio, we focus here on the Ca?" time series between

60ka and 30ka b2k.
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Original (red) and randomly chosen simulated time series
based on KM, MZ, and EMR methods (from top to bottom

respectively).
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