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Global Volcano Monitoring: The LïCSAR-volcano database

http://comet.nerc.ac.uk/ COMET-LiCS-portal/
• Sentinel-1 has generated >10-TB data per day
• Test dataset of ~30,000 interferograms at >900 active volcanoes produced by LiCSAR
• Now up to >400,000 (Mar 2019), 80% of volcanoes.
• Anticipate 1 million images per year when fully operational.
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Ground deformation, background, 
noise or atmosphere?

Erta Ale Etna

https://www.esa.int/spaceinimages/Images/2010/06/Volcanic_uplift

Volcanic uplift in the 
Great Rift Valley

Researchers aim to understand past
volcanic behaviour, search for signs of
current activity and make a long-range
eruptive forecast for the region. A recent
report for the World Bank ranked 49 of
Ethiopia's 65 volcanoes in the highest
category of hazard uncertainty.
(http://www.bris.ac.uk/news/ 2014/august/great-
rift-valley.html)



Proposed framework
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AlexNet



Training Dataset: Synthetic components 
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Final Interferogram

Deformation (D) Stratified atmosphere (S) Turbulent atmosphere (T)

Anantrasirichai et 
al, 2019, RSE



Areas inside dark and bright green contours are where P>0.5 and P>0.8, respectively.

§ True positive results

Results
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§ False positive results
30,249 interferograms of the Sentinel-1 dataset 

Trained by #P #TP #FP #FN

Synthetic 334 41 293 1

+ Sentinel 50 41 9 1



False negative result Sierra Negra
(20170425-20170531)                                       (20170519-20170531)                                 (20170519-20170718) 

False Negatives
§ Current CNN trained to detect rapid deformation signals that produce multiple fringes in a single interferogram
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1 fringe in a 12 day
interferogram
= 85 cm/yr • Slow, steady deformation is common. 

• Can we improve detection thresholds?
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Overwrapping technique
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Increasing Wrap Gain

• Method: 
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Example: Campi Flegrei, Italy

• A new pulse of uplift 
began in July 2017 

• Three short-duration 
interferograms for each 
time acquisition 

• No atmospheric 
correction

• A linear least-square 
inversion is performed 
on the network of 
unwrapped 
interferograms
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Urban Sources – UK Digital Environment

Problems:
• Sparsity and noise
• Lack of real data (deformation types: 

sinkholes, coal mining subsidence, landside, 
fracking site, etc.) 

Adapted Methods:
• Synthetic data (D + T) 

• point source – ground subsidence
• Spatial interpolation

• Matrix completion with soft 
thresholding
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Convolution



Sparsity and spatial interpolation
Normanton and Castleford - coal mining area uplift
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Sparsity and spatial interpolation
• Matrix completion with soft thresholding
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Detection results

2015 - early 2019

• 66,801x121,501 pixels
• >64 million points (ascending)
• >29 million points (descending)
• Interpolating process at 

2500x2500 pixels
• CNN input size is 224x224 pixels
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Detection results
Subsidence and uplift from coal mining

Subsidence from engineering work

Uplift from ground water rebound

2015 - early 2019

14Gee, D., et al. (2017). 
Ground motion in areas of 
abandoned mining: 
Application of the 
intermittent sbas (isbas) 
to the northumberland
and durham coalfield, uk

Boní, R.  et al, (2018) A 
Methodology to Detect303and 
Characterize Uplift Phenomena in 
Urban Areas Using Sentinel-1 Data



Limitations
Landslides

2015 - early 2019

Landslides

sinkhole

Individual displacement time series from a 15m 
radius around the sinkhole
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Conclusions
§ Global datasets have value for monitoring and understanding magmatic processes.
§ LiCSAR routine processing producing large data volumes (>100,000 volcano images).
§ Deep learning framework automatically searches through large volumes of wrapped 

InSAR images to detect rapid ground deformation that may be related to volcanic 
activity.

§ Problem of imbalanced training data was solved using synthetic examples, where three 
major components, i.e. deformation, stratified and turbulent atmosphere.

§ Slow deformation can be detected using cumulative signals and over-wrapped data.
§ Adaptable to urban sources of deformation with preprocessing techniques, including 

spatial interpolation. 
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