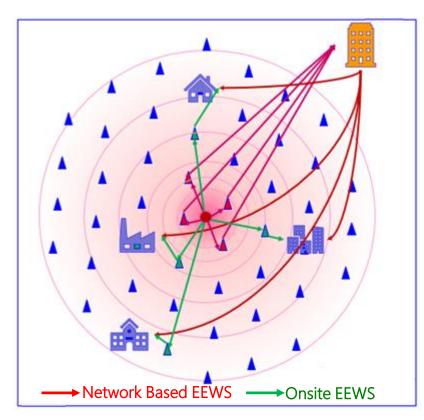
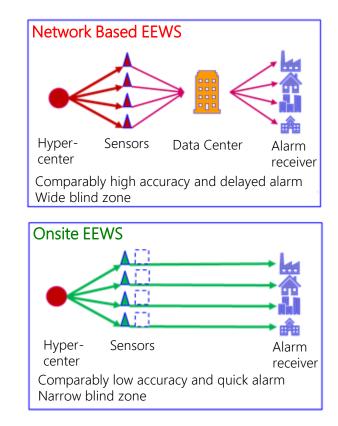
Application of on-site EEW technology in South Korea.

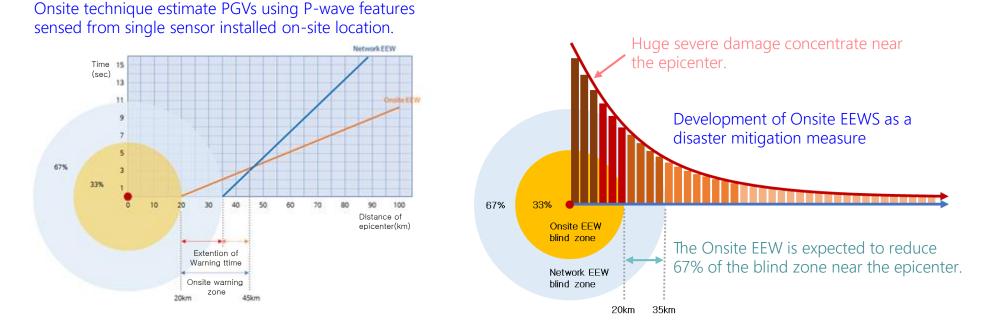

HoJun LEE^{*} JeongBeom SEO JinKoo LEE Inchan JEON, KIT Valley Co.



Onsite Earthquake Early Warning

Two types of EEWS for quick estimation and alarm of seismic motion.

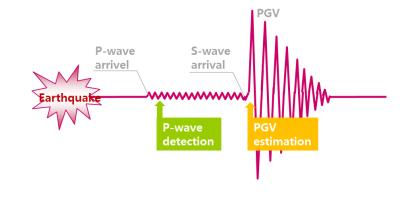
- Network Based EEWS : Using multi stations, Estimation of earthquake magnitude and intensity, Network based alarm transfer, Wide Blind zone.
- Onsite EEWS : Using single or a few sensors, Estimation of on-site shaking and obtaining alarm



Importance of on-site EEW Tech. in South Korea.

Needs of the Onsite technique to compliment the network based EEWS in Korea.

- Korea does not have a lot of massive earthquakes, but it is the country that operates EEWS.
- KMA operates EEWS which could issue within 7 to 25 seconds after the first detection of seismic motion.
- Onsite EEWS is useful to reduce the blind zone of seismic warning and huge damages near the epicenter.
- Research on develop methods to estimate the on-site shaking from the P-wave features in Korea.
- Seismic records in Korea have been gathered and analyzed to get relation between P-waves and PGVs.


Onsite EEWS Technology

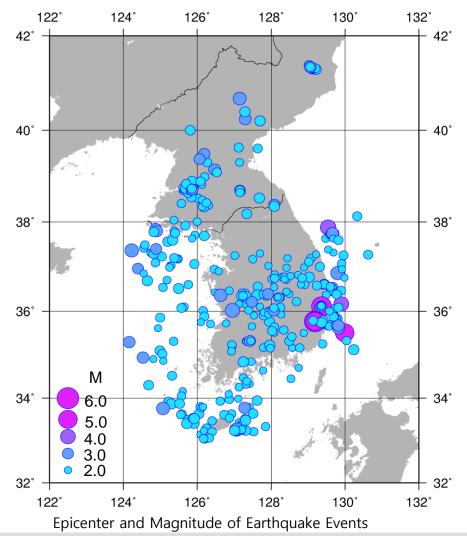
The PGV is proportional to the amplitude of P-waves.
P-waves, PGVs relationships for the Onsite EEW have been derived in previous studies.

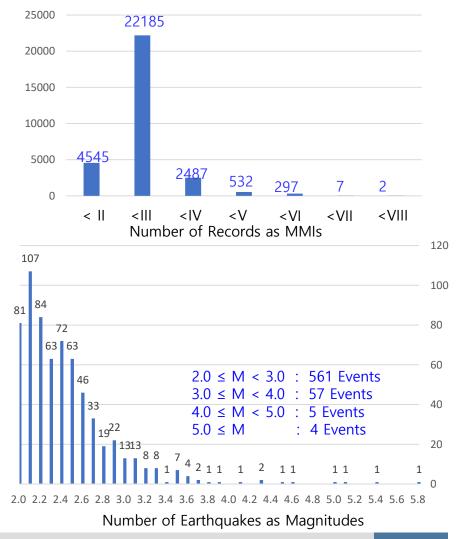
- Empirical equations that explain relationship between P-wave features and PGVs

 $log PGV = -0.55(\pm 0.05) + 0.72(\pm 0.05) log Pa \pm 0.61$ (1) $log PGV = 0.72(\pm 0.06) + 0.93(\pm 0.05) log Pv \pm 0.52$ (2) $log PGV = 1.11(\pm 0.08) + 0.69(\pm 0.04) log Pd \pm 0.61$ (3) by S.Colombelli et.al.(2015)

log PGV = $0.920 \log Pd + 1.642 \pm 0.326$ (4) by Wu and Kanamori(2005)

(The variable Pa, Pv and Pd denote amplitudes of peak acceleration, velocity and displacement of initial P-waves in vertical direction.)

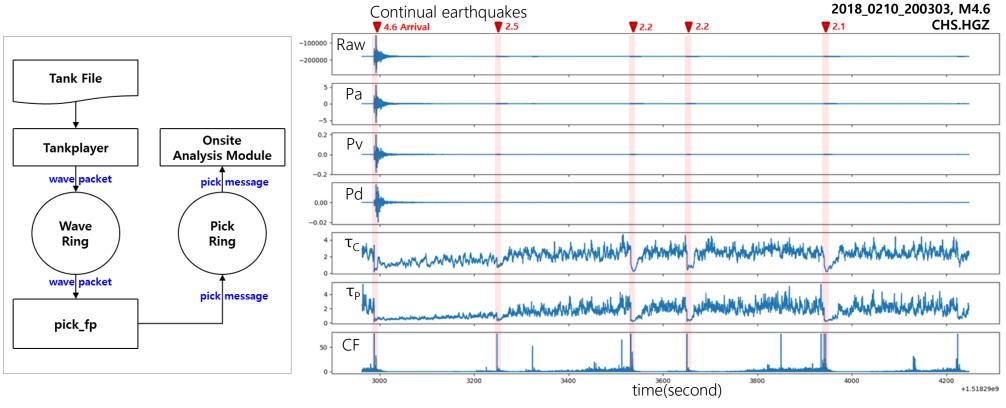

The relations between the PGVs and P-waves are to be driven using the seismic data observed in South Korea in this study.



Seismic Records in South Korea

Seismic records used for analysis to derive field alert empirical expressions in Korea

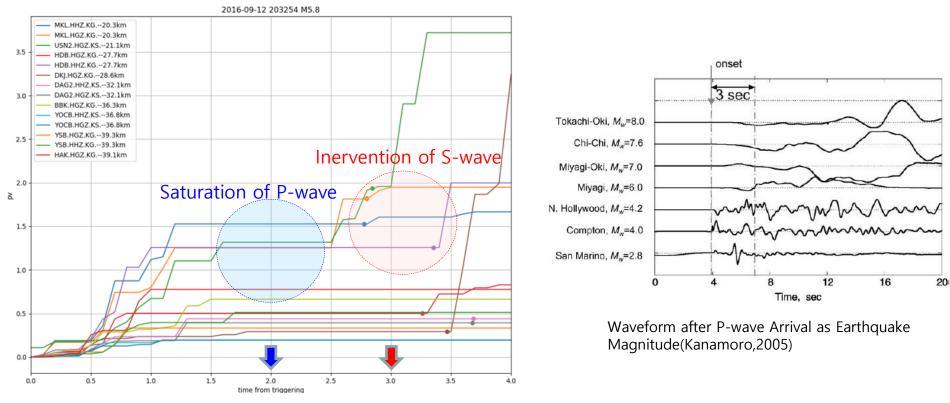
(May, 2015 ~ April, 2019, Total 657 Events, <37,000 Records)


5

Detecting and Extracting P-wave Features

Detecting and identifying number of P-wave features using Filter Picker(Lomax et al., 2012)

Modified Pick_fp module extract P-wave CF(Characteristic Function), Peak Acceleration, Peak Velocity, Peak Displacement, τ_C and τ_P etc. consistently and reliably.
 ※ CF(Lomax et al.,2012), τ_P(Allen and Kanamori,2003), τ_C(Wu and Kanamori, 2005)



Modified Filter Picker and extracted P-wave feature

P-wave Time Window

• What is the optimum PTW for P Extraction?

- In general 3 seconds of PTW is selected as a period of full saturation of P-wave without S-wave intervantion
- In earthquakes with a M6.0 or lower, S-wave interference is included when PTW is selected for 3 seconds.
- At 2 seconds, the P-wave is fully saturated without 2 wave interference.

Form of growth over time after arrival of P-wave at the seismic stations in case of M5.8 Kyungju earthquake in 2016.

Application of Onsite Tech. In South Korea

Case studies to derive P-PGV emphirical relationship using seismic records in South Korea.

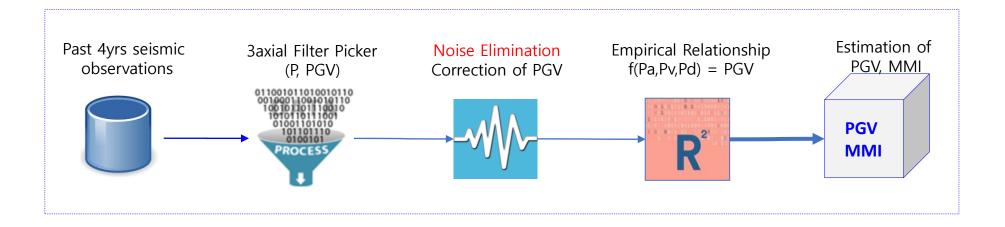
Case	Seismic F	HPF	Data	Regression	
	Analyzed from	Estimation	Freq.	Binning (EA/MMI)	Equation*2
1	Observed Records for 4yrs(M≥2.0)	Seismic Records for 4yrs(M≥2.0)	0.3Hz	-	SR
2	Observed Records for 4yrs(M≥3.0)	Seismic Records for 4yrs(M≥3.0)	1.0Hz	-	
3	Observed Records for 4yrs(M≥3.0)	Seismic Records for 4yrs(M≥3.0)	1.0Hz	200	SR Ave.
4	Pseudo Records of M5.8(2016)	Seismic Records for 4yrs(M≥3.0)	1.0Hz	≒ 7,000	MR
5	Pseudo Records of M5.8(2016)	M5.4 Obs. Records of M5.4(2017)	1.0Hz	≒ 7,000	

*1 Seismic Records

Observed Records : Observed Seismic records from May, 2015 to May, 2019 in Korea **Pseudo Records**: Spatially interpolated seismic records from a single event records

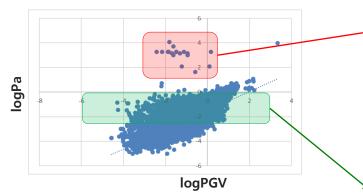
- 1 Hz High Pass Filter is applied to remove the long-period noise inherent in P waves.
- Measured PGV is converted to the values on the bed rock (Ministry of Public Safety and Security, 2017)

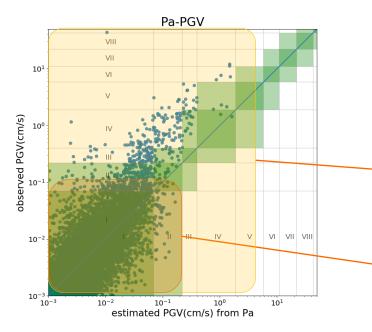
*2 Regression Equation

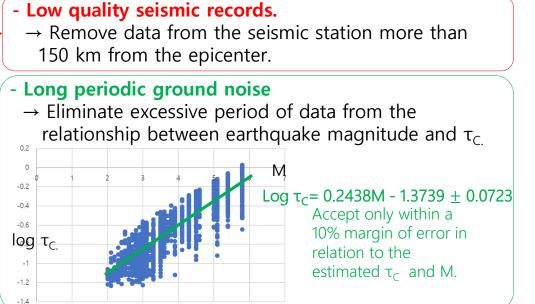

SLR	: Simple Linear Regressi	on ; $f(Pa) = g(Pv) = h(Pd) = PGV$
SLR Ave.	: Averaged SL	; $f(Pa) + g(Pv) + h(Pd) = 3 \times PGV$
MR	: Multiple Regression	; $F(Pa, Pv, Pd) = PGV$

Case 1; Simple Linear Regression of Records

Case 1 : Onsite Warning through single linear regression seismic records over the past four years


- Extracting maximim P-wave vertical amplitude (Pa, Pv, Pd) within 2 seconds of PTW from seismic records.
- Eliminate noise in P-waves(background ambient noise, low-intensity data not needed for alarms, etc.).
- Simple linear regression analysis to derive relationship between PGV and Pa, Pv and Pd.
- Derives MMI from predicted PGV and determines and estimate the error.

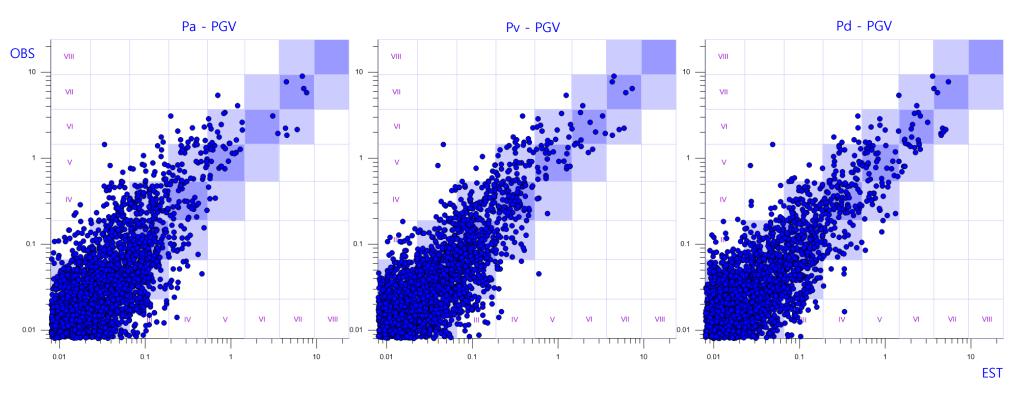




Seismic Records Refining

Elimination of Noises in P-waves(Background Noise, Far-field Records, Low Intensity Records, etc) and Site Correction on the Bed Rock.

- Site correction for seismic station on the ground


→ Site response were removed using the VS30 values if the seismic station locates on the ground. (MPSS Korea ,2017).

- Data from low intensity

 \rightarrow Eliminate data under the PGV of 0.02(MMI<1.5)

Derive the empirical equations for Onsite EEW(1)

Estimation of PGV from P-wave properties using empirical equations for raw seismic records in Korea.

- Comparison of PGV Observations and estimations through simple linear regression for M≥2.0 seismic records and evaluation of success rate

(i)

CC

Derived empirical equation for Onsite EEW in Korea (M<6.0)</p>

 $logPGV = 0.9563(\pm 0.0257)logPa - 1.2503(\pm 0.0219)$, stdv = 0.4548, $R^2 = 0.6599$

 $logPGV = 0.9343(\pm 0.0225)logPv + 0.5404(\pm 0.0576)$, stdv = 0.4218, $R^2 = 0.7075$

 $logPGV = 0.7944(\pm 0.0196)logPd + 1.5297(\pm 0.0828)$, stdv = 0.4294, $R^2 = 0.6968$

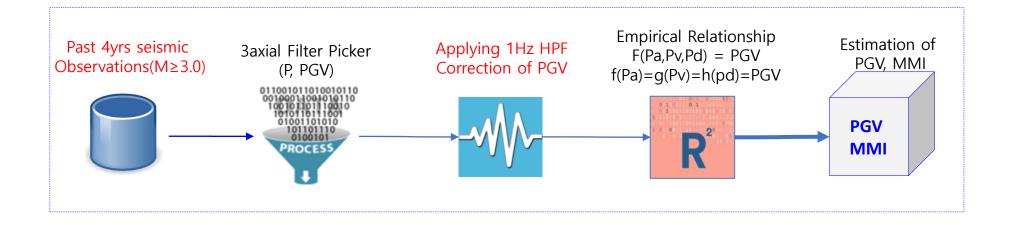
MMI	False	Success	Total	Suc. Ratio	MMI	False	Success	Total	Suc. Ratio	MMI	False	Success	Total	Suc. Ratio
1	65	2748	2813	97.69	1	49	2764	2813	98.26	1	43	2770	2813	98.47
2	12	742	754	98.41	2	8	746	754	98.94	2	4	750	754	99.47
3	44	295	339	87.02	3	25	314	339	92.63	3	39	300	339	88.50
4	53	124	177	70.06	4	20	157	177	88.70	4	12	165	177	93.22
5	22	51	73	69.86	5	11	62	73	84.93	5	8	65	73	89.04
6	12	19	31	61.29	6	8	23	31	74.19	6	6	25	31	80.65
7	2	4	6	66.67	7	1	5	6	83.33	7	1	5	6	83.33
8	0	1	1	100.00	8	0	1	1	100.00	8	1	0	1	0.00
										DCV/C				

Evaluation of Onsite EEW Performance

PGV from Pa

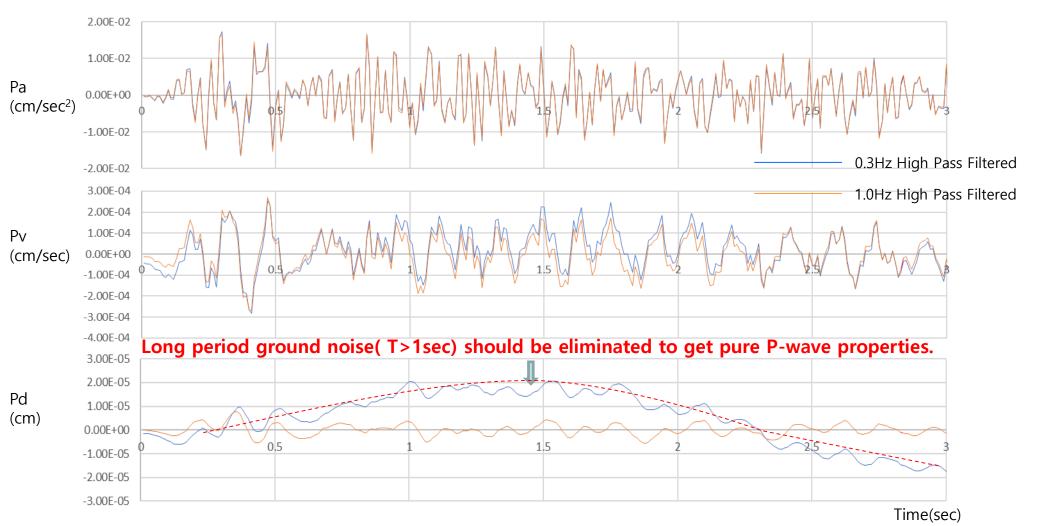
PGV from Pv

PGV from Pd


- Judged successful ratio by the number of successful or false alarm within ±1 MMI scale.

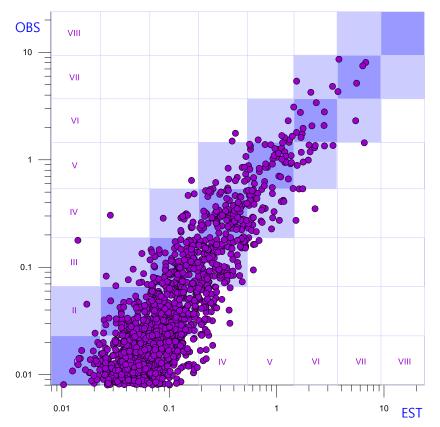
Case 2 ; Simple Linear & Multiple Regression of M≥3.0 Records

Case 2 : Onsite EEW through simple linear and multiple regression of M≥3.0 over the past 4yrs


- Extracting maximim P-wave vertical amplitude (Pa, Pv, Pd) of M≥3.0 earthquake within 2 seconds of PTW.
- Simple linear and multiple regression analysis of PGV and Pa, Pv and Pd.
- Derives MMI from predicted PGV and determines and estimate the error.

Control of Ground Long-Period Noise with HPF

Comparison of P-wave vertical amplitude variation with long-period component filtering on the ground

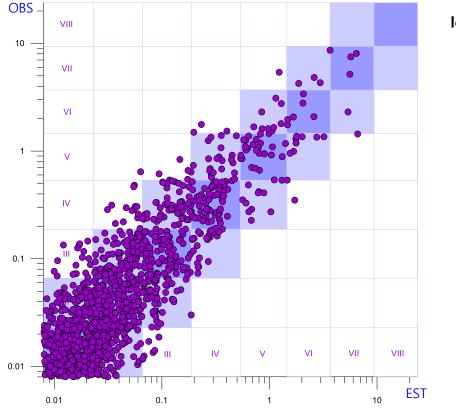


M3.1, Station : CIGB.HHZ.KS, Inst. MMI : 1.0

Comparison of Observed and Estimated PGV (M≥3.0, 1Hz HPF) and evaluation of EEW performance

- Averaged PGV estimated through simple linear regression ; f(Pa) + g(Pv) + h(Pd) = 3 x PGV

 $logPGV = 0.998(\pm 0.011)logPa - 1.263(\pm 0.009) stdv = 0.371 R^{2} = 0.764$ $logPGV = 0.992(\pm 0.009)logPv +0.536(\pm 0.023) stdv = 0.329 R^{2} = 0.814$ $logPGV = 0.883(\pm 0.010)logPd +1.588(\pm 0.040) stdv = 0.386 R^{2} = 0.744$


MMI	False	Success	Total	Suc. Ratio
1	4	1631	1635	99.76
2	0	406	406	100.00
3	20	219	239	91.63
4	15	132	147	89.80
5	8	55	63	87.30
6	3	17	20	85.00
7	1	7	8	87.50
8	0	0	0	
9	0	0	0	
10	0	0	0	

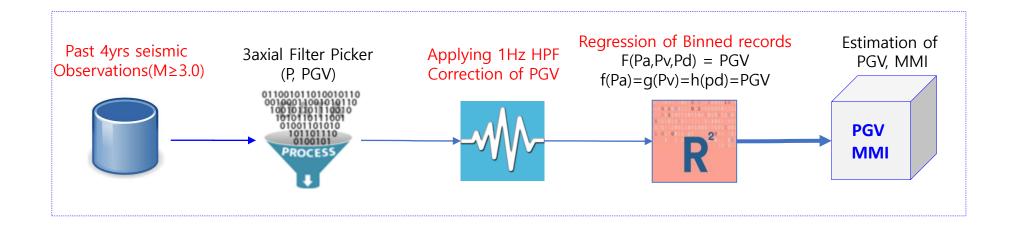
- Comparison of PGV observations and prediction through simple linear regression for 1Hz HPF applied M≥3.0 seismic records.
- Judged successful ratio by the number of successful or false alarm within ±1 MMI scale.

■ Comparison of Observed and Estimated PGV (M≥3.0, 1Hz HPF) and evaluation of EEW performance

- PGV estimated through multiple regression ; F(Pa, Pv, Pd) = PGV

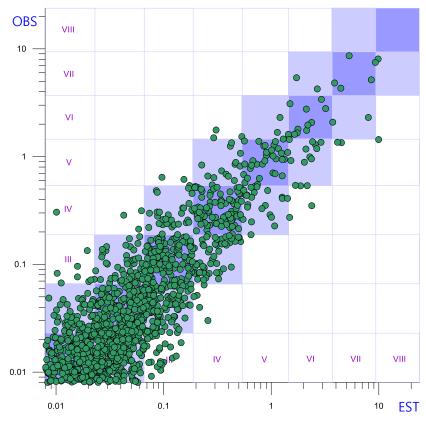
logPGV = 0.482 + 0.195 logPa + 0.626 logPv + 0.183 logPdstdv = 0.327 R² = 0.816

MMI	False	Success	Total	Suc. Ratio
1	7	1628	1635	99.57
2	0	406	406	100.00
3	21	218	239	91.21
4	18	129	147	87.76
5	8	55	63	87.30
6	3	17	20	85.00
7	1	7	8	87.50
8	0	0	0	
9	0	0	0	
10	0	0	0	


- Comparison of PGV observations and prediction through multiple regression for 1Hz HPF applied M≥3.0 seismic records.
- Judged successful ratio by the number of successful or false alarm within ±1 MMI scale.

Case 3 ; Simple Linear & Multiple Regression of Binned Records

Case 3 : Simple linear and multiple regression using seismic records binned by MMI grade.


- Extracting maximim P-wave vertical amplitude (Pa, Pv, Pd) of M≥3.0 earthquake within 2 seconds of PTW.
- Simple linear and multiple regression analysis between PGV and Pa, Pv and Pd using binned seismic records 200 records were binned per MMI each, and the same MMI grade of records was inputed in duplicate if the records was insufficient at each MMI grade.
- Derives MMI from predicted PGV of and determines and estimate the error.

■ Comparison of Observed and Estimated PGV (M≥3.0 binned, 1Hz HPF) and evaluation of EEW performance

- Averaged PGV estimated through simple linear regression ; f(Pa) + g(Pv) + h(Pd) = 3 x PGV

 $logPGV = 1.011(\pm 0.010)logPa - 1.038(\pm 0.010) stdv = 0.354 R^{2} = 0.872$ $logPGV = 1.032(\pm 0.009)logPv + 0.765(\pm 0.014) stdv = 0.314 R^{2} = 0.899$ $logPGV = 0.905(\pm 0.010)logPd + 1.855(\pm 0.028) stdv = 0.365 R^{2} = 0.864$

MMI	False	Success	Total	Suc. Ratio	Binning EA
1	25	1466	1491	98.32	1637 <mark>(200)</mark>
2	4	309	313	98.72	404(200)
3	9	182	191	95.29	239 <mark>(200)</mark>
4	8	127	135	94.07	142 <mark>(200)</mark>
5	6	55	61	90.16	61(200)
6	2	17	19	89.47	20 <mark>(200)</mark>
7	0	8	8	100.00	8(200)
8	0	0	0		total <mark>(used)</mark>
9	0	0	0		
10	0	0	0		

- Comparison of PGV observations and prediction through simple linear regression for 1Hz HPF applied M≥3.0 seismic records binned by MMI grade.
- Judged successful ratio by the number of successful or false alarm within ±1 MMI scale.

1637(200)

404(200)

239(200)

142(200)

61(200)

20(200)

8(200)

total(used)

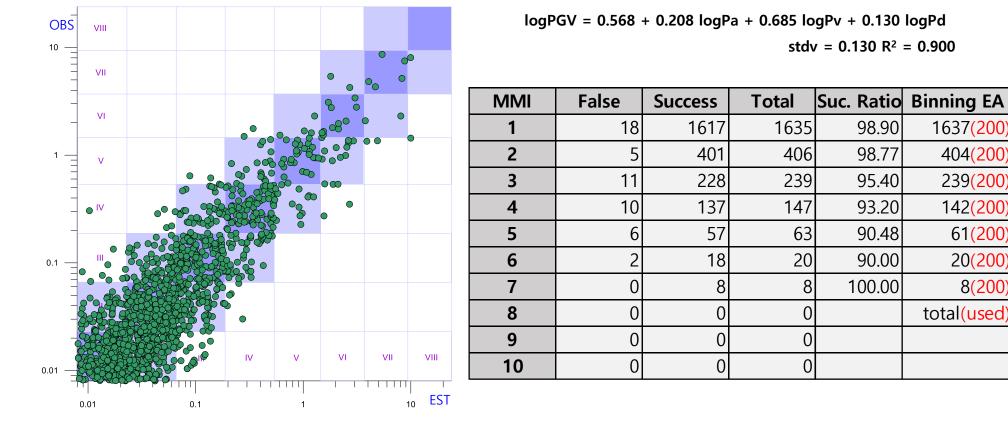
98.90

98.77

95.40

93.20

90.48

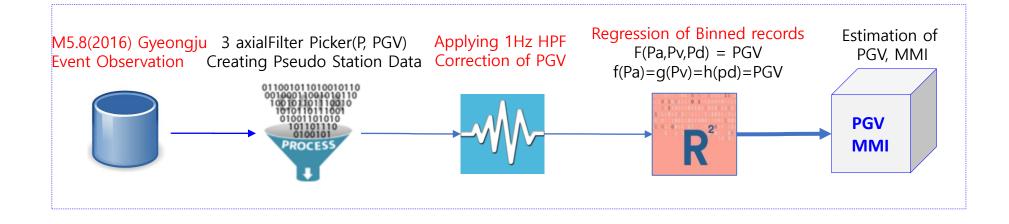

90.00

100.00

Performance of Onsite EEW in Case 3

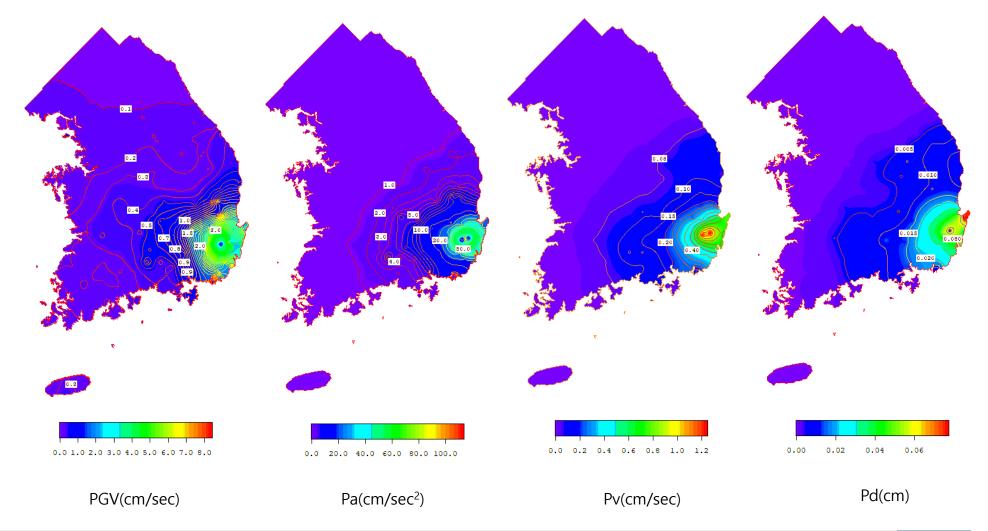
Comparison of Observed and Estimated PGV (M≥3.0 binned, 1Hz HPF) and evaluation of EEW performance

- PGV estimated through multiple regression ; F(Pa, Pv, Pd) = PGV

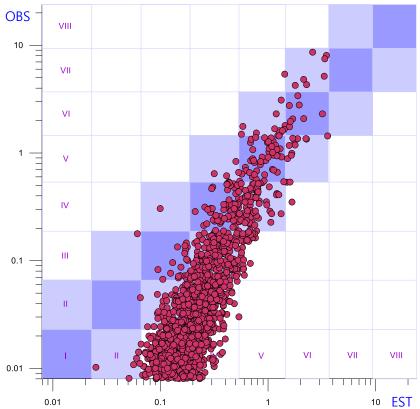

- Comparison of PGV observations and prediction through multiple regression for 1Hz HPF applied M≥3.0 seismic _ records binned by MMI grade.
- Judged successful ratio by the number of successful or false alarm within ±1 MMI scale.

Case 4 ; Regression using Virtual Station Records

Case 3 : Regression using virtual station records created by interpolation of existing station records


- M5.8 Gyeongju event(2016) produces virtual records of Pa, Pv, Pd, and PGV from a virtual station created by interpolation of observations into the Korean Peninsula. (Total 114,304 sets)
- Simple linear and multiple regression analysis between PGV and Pa, Pv and Pd using binned seismic records 7,000 records were randomly selected and binned per MMI each except for MMI I and II.
- Derives MMI from predicted PGV of M5.4 Pohang event and determines and estimate the error.

Creating Pseudo Station Records of M5.8


Generates pseudo station records by interpolation of PGV, PA, Pv, and Pd observations into 0.01 x 0.01 spatial grids on the Korean Peninsula.

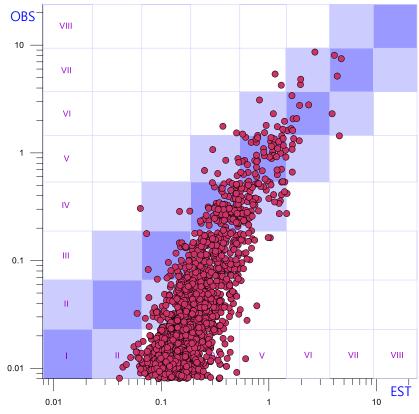
Comparison of PGVs(Binned pseudo records of M5.8,1Hz HPF) and evaluation of performance

- Averaged PGV estimated through simple linear regression ; f(Pa) + g(Pv) + h(Pd) = 3 x PGV

$$\begin{split} & \text{logPGV} = & 0.482(\pm 0.001)\text{logPa} - 0.400(\pm 0.001) \text{ stdv} = 0.154 \text{ R}^2 = 0.915 \\ & \text{logPGV} = & 0.524(\pm 0.001)\text{logPv} + 0.442(\pm 0.002) \text{ stdv} = 0.173 \text{ R}^2 = 0.893 \\ & \text{logPGV} = & 0.549(\pm 0.001)\text{logPd} + 1.063(\pm 0.003) \text{ stdv} = 0.190 \text{ R}^2 = 0.871 \end{split}$$

MMI	False	Success	Total	Suc. Ratio	Binning EA
1	1276	359	1635	21.96	13 <mark>(13)</mark>
2	270	136	406	33.50	462 <mark>(462)</mark>
3	25	214	239	89.54	44,693 <mark>(7,000)</mark>
4	3	144	147	97.96	49,899 <mark>(7,000)</mark>
5	0	63	63	100.00	11,271 <mark>(7,000)</mark>
6	0	20	20	100.00	7,251 <mark>(7,000)</mark>
7	1	7	8	87.50	715 <mark>(715)</mark>
8	0	0	0		total(used)
9	0	0	0		
10	0	0	0		

- Comparison of PGV observations and prediction of M5.4 earthquake through simple linear regression for 1Hz HPF applied M≥3.0 seismic records binned by MMI grade.


- Successful ratios of MMI I and II are extremely low because available records are insufficient but they have no need to warn.

- Judged successful ratio by the number of successful or false alarm within ±1 MMI scale.

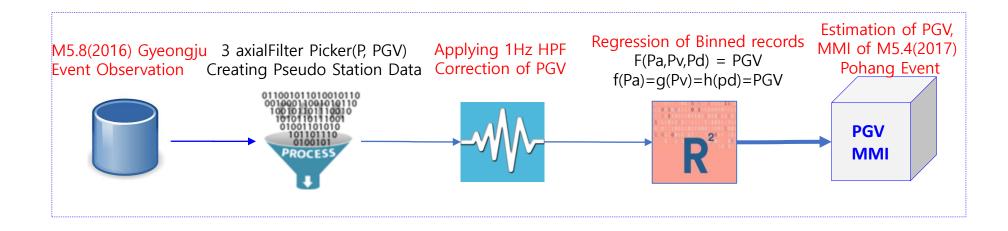
Comparison of PGVs(Binned pseudo records of M5.8,1Hz HPF) and evaluation of performance

- PGV estimated through multiple regression ; F(Pa, Pv, Pd) = PGV

logPGV = -0.524 + 0.876 logPa - 0.892 logPv + 0.492 logPd

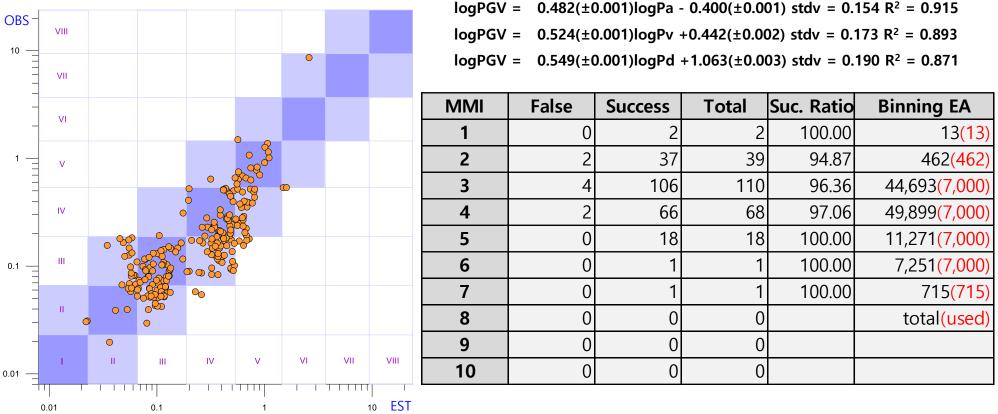
stdv = 0.144 R² = 0.9251

MMI	False	Success	Total	Suc. Ratio	Binning EA
1	1434	201	1635	12.29	13 <mark>(13)</mark>
2	220	186	406	45.81	462 <mark>(462)</mark>
3	17	222	239	92.89	44,693 <mark>(7,000)</mark>
4	3	144	147	97.96	49,899 <mark>(7,000)</mark>
5	1	62	63	98.41	11,271 <mark>(7,000)</mark>
6	2	18	20	90.00	7,251 <mark>(7,000)</mark>
7	2	6	8	75.00	715 <mark>(715)</mark>
8	0	0	0		total <mark>(used)</mark>
9	0	0	0		
10	0	0	0		


- Comparison of PGV observations and predictions of M5.4 earthquake through multiple regression for 1Hz HPF applied M5.8 pseudo records binned by MMI grade.
- Successful ratios of MMI I and II are extremely low because available records are insufficient but they have no need to warn.
- Judged successful ratio by the number of successful or false alarm within ±1 MMI scale.

Case 5 ; Estimate M5.4 event using M5.8 event records

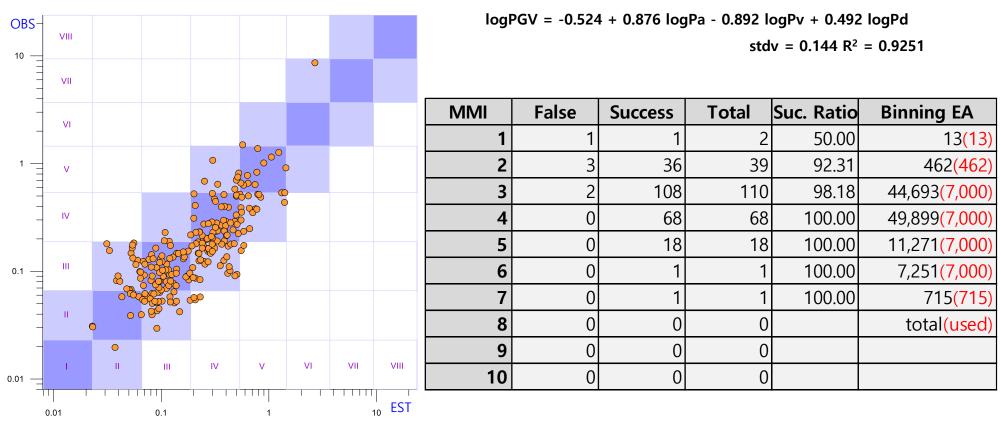
Case 3 : Estimate M5.4 Pohang event using pseudo records of M5.8 Gyeongju event.


- M5.8 Gyeongju event(2016) produces virtual records of Pa, Pv, Pd, and PGV from a virtual station created by interpolation of observations into the Korean Peninsula. (Total 114,304 sets)
- Simple linear and multiple regression analysis between PGV and Pa, Pv and Pd using binned seismic records 7,000 records were randomly selected and binned per MMI each except for MMI I and II.
- Estimate PGV of M5.4 Pohang event using pseudo records of Pa, Pv and Pd of M5.8 Gyeongju event.

Comparison of PGVs of M5.4(Binned pseudo records of M5.8,1Hz HPF) and evaluation of performance

- Averaged PGV estimated through simple linear regression ; f(Pa) + g(Pv) + h(Pd) = 3 x PGV

- Comparison of PGV observations and prediction of M5.4 earthquake through simple linear regression for 1Hz HPF applied M≥3.0 seismic records binned by MMI grade.

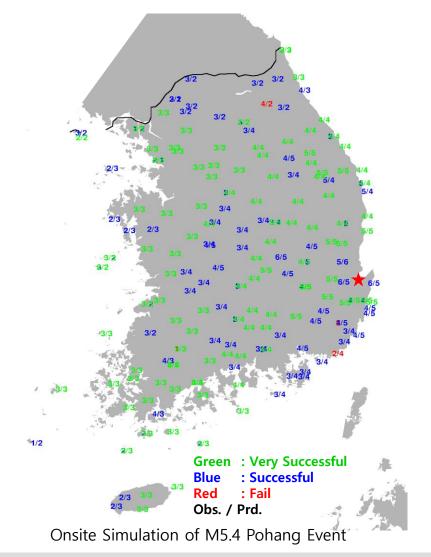

- Successful ratios of MMI I and II are extremely low because available records are insufficient but they have no need to warn.

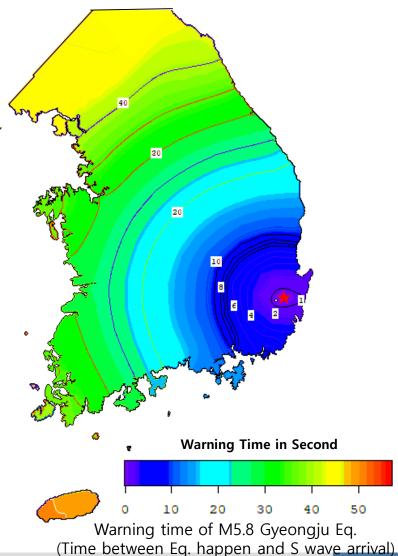
- Judged successful ratio by the number of successful or false alarm within ±1 MMI scale.

Comparison of PGVs of M5.4(Binned pseudo records of M5.8,1Hz HPF) and evaluation of performance

- PGV estimated through multiple regression ; F(Pa, Pv, Pd) = PGV

- Comparison of PGV observations and predictions of M5.4 earthquake through multiple regression for 1Hz HPF applied M5.8 pseudo records binned by MMI grade.


- Successful ratios of MMI I and II are extremely low because available records are insufficient but they have no need to warn.


- Judged successful ratio by the number of successful or false alarm within ±1 MMI scale.

Onsite Simulation of Past Events

Warning performance and time of M5.4 Pohang event and M5.8 Gyeongju event.

Summary

- Onsite EEWS is said to be useful for reducing blind zone and massive damages near epicenter when earthquake occurred.
- Five cases desktop tests of the on-site EEW was carried out using past 4 years seismic records in Korea.
- It was possible to detect P-waves features from seismic records using the Filter Picker rapidly and consistently.
- Useful empirical equations for the actual implementation of onsite EEWS and data sets have been arranged in Korea.
- To reduce wrong detections of P-waves and successful warning, machine learning techniques are now being applied.

