A structure-preserving approximation of the discrete split rotating shallow water equations

Werner Bauer¹ and Jörn Behrens² and Colin Cotter³ ¹Imperial College London, UK, (werner.bauer.email@gmail.com) and ² Universität Hamburg, Imperial College Germany (joern.behrens@uni-hamburg.de) and ³ Imperial College London, UK versität Hamburg London DER FORSCHUNG | DER LEHRE | DER BILDUNG (colin.cotter@imperial.ac.uk) **III. Split Hamiltonian FE discretization of split RSW Motivation and Overview** Let $\mathcal{H}: \Lambda^1 imes \widetilde{\Lambda}^1 imes \widetilde{\Lambda}^1 o \mathbb{R}$ be the Hamiltonian functional of the split slice Numerical schemes that lack structure preservation might lead to wrong statistics RSW model, defined by of long-term (climate) simulations. Structure-preserving schemes for geophysical $\mathcal{H}[u_h^{(1)},\widetilde{v}_h^{(1)},\widetilde{h}_h^{(1)}]=rac{1}{2}\langle u_h^{(1)}, ilde{\star}h_h^{(0)}\widetilde{u}_h^{(0)}
angle+rac{1}{2}\langle \widetilde{v}_h^{(1)}
angle$ fluid dynamics (GFD) can be consistently derived with finite element (FE) methods, e.g. [5], but they are often computationally expensive (large mass with metric equations: matrix) or non-local (weak form). $\widetilde{u}_h^{(0)} = \widetilde{u}_h^{(0)}[u_h^{(1)}] = ilde{\star}_h u_h^{(1)}, \; v_h^{(0)} = v_h^{(0)}[\widetilde{v}_h^{(1)}] = ilde{\star}_h \widetilde{v}_h^{(1)}$ We suggest a novel split FE framework [2,3,4] for eqns. of GFD based on [1] with: in which [] indicates the dependency of a function from another one. Key features • discrete schemes consist of prognostic topological and diagnostic metric eqns. We define the (almost) Poisson bracket $\{,\}$ as $\mathbf{h}_n^0, \tilde{\mathbf{u}}_n^0, \mathbf{v}_n^0$ simply by averaging. • split schemes' properties: structure preservation results from topological eqns.; $\{\mathcal{F},\mathcal{G}\} := -\langle rac{\delta \mathcal{F}}{\delta \widetilde{h}_{h}^{(1)}}, \mathrm{d}\, \check{\star} rac{\delta \mathcal{G}}{\delta u_{h}^{(1)}}
angle - \langle rac{\delta \mathcal{F}}{\delta u_{h}^{(1)}}, \mathrm{d}\, \check{\star} rac{\delta \mathcal{G}}{\delta \widetilde{h}_{h}^{(1)}}
angle + \langle rac{\delta \mathcal{F}}{\delta u_{h}^{(1)}}, \check{\star} \widetilde{q}_{h}^{(0)} \check{\star} rac{\delta \mathcal{G}}{\delta \widetilde{v}_{h}^{(1)}}
angle - \langle rac{\delta \mathcal{F}}{\delta \widetilde{v}_{h}^{(1)}}, \check{\star} \widetilde{q}_{h}^{(0)} \check{\star} rac{\delta \mathcal{G}}{\delta u_{h}^{(1)}}
angle$ convergence, accuracy, dispersion relation from metric eqns. **VI.** Results \Rightarrow they preserve both Hamiltonian and split structures! with PV $q_h^{(1)}$ defined implicitly by structure-preservation is independent from realization of metric eqns. $\langle ilde{\star} \widetilde{\phi}_h^{(0)}, \widetilde{q}_h^{(0)} \widetilde{h}_h^{(1)}
angle + \langle \mathrm{d}\, \widetilde{\phi}_h^{(0)}, \widetilde{v}_h^{(1)}
angle - \langle ilde{\star} \widetilde{\phi}_h^{(0)}, f dx
angle$ all differential operators are local (by avoiding weak form) • split FEM results in efficient schemes in matrix-vector form Then, the dynamics for any functional $\mathcal{F}: \Lambda^1 imes \widetilde{\Lambda}^1 imes \widetilde{\Lambda}^1 o \mathbb{R}$ is given by **Conclusions and Outlook** $rac{d}{dt}\mathcal{F}[u_h^{(1)},\widetilde{v}_h^{(1)},\widetilde{h}_h^{(1)}]=\{\mathcal{F},\mathcal{H}\}.$ • larger choice of FE spaces, compared to standard FE, permits to derive and study novel schemes • systematic derivations of structure-preserving approximations is decoupled The discrete Hodge star operators $\tilde{\star}_h$ in (2) are realized by nontrivial Galerkin from modifications in metric equations (smoothing, adding noise, etc.) projections $(\text{GP1}_h, \text{GP0}_h, \text{GP1}_u, \text{GP0}_u)$ (see IV.). • todo: study stability, higher dimensions, higher order **IV.** Family of split P0-P1 schemes I. Split y-independent (slice) RSW equations The introduction of double pairs of compatible FE spaces enriches the choice of We introduce a y-independent model case as this provides insight towards potential schemes. For the low order P0-P1 double pairs, we find the following developing schemes for the full 2D rotating shallow water (RSW) equations. family of split low-order (P0-P1) FE schemes, consisting of one set of topological equations and 4 combinations of metric closure equations: $GP1_u - GP1_h$, $-\,\mathrm{d}\widetilde{F}_{u}^{(0)}=0,$ $\mathrm{GP1}_u - \mathrm{GP0}_h/\mathrm{GP0}_u - \mathrm{GP1}_h$, or $\mathrm{GP0}_u - \mathrm{GP0}_h$, cf. [2]: topol. moment. eqn.: $\frac{\partial}{\partial t}\mathbf{u}_{e}^{1} + \mathbf{D}^{en}\mathbf{B}_{n}^{0} - \widetilde{\mathbf{M}^{en}}(\tilde{\mathbf{q}}_{n}^{0} \circ \mathbf{F}_{n}^{v})$ using the definitions $\mathrm{h}_n^0 \ \in \ \Lambda_h^0 \subset P1 \xrightarrow{\mathrm{D}^{en}} \Lambda_h^1 \subset P0 \
ightarrow \mathrm{u}_e^1, ilde{\mathrm{v}}_e^1$ $\text{GP1}_h: \text{M}^{nn} \text{h}_n^0 = \text{P}^{ne} \tilde{\text{h}}_e^1$ $| \mathbf{GP1}_u: \mathbf{M}^{nn} \tilde{\mathbf{u}}_n^0 = \mathbf{P}^{ne} \mathbf{u}_e^1 \& \mathbf{M}^{nn} \mathbf{v}_n^0 = \mathbf{P}^{ne} \tilde{\mathbf{v}}_e^1$ $ext{GP0}_h: ext{M}^{en} ext{h}_n^0 = ilde{ ext{h}}_e^1$ • 1d f-plane: f const. Coriolis param., g graviational constant, wave speed $c=\sqrt{gH}$, H mean height \odot 0-forms (functions): fluid height $h^{(0)}(x,t)$, velocities $\widetilde{u}^{(0)}(x,t), v^{(0)}(x,t)$ $ilde{\mathrm{h}}^1_e \ \in \ \widetilde{\mathrm{A}}^1_h {\subset}\ P0 \ \xleftarrow{\mathrm{D}^{en}}\ \widetilde{\mathrm{A}}^0_h {\subset}\ P1 \
i \ \mathfrak{U}^0_n, \mathrm{v}^0_n$ \circ 1-forms: fluid height $\widetilde{h}^{(1)}(x,t)$, velocities $u^{(1)}(x,t) = u(x,t)dx$, $\widetilde{v}^{(1)}(x,t) = v(x,t)dx$ • twisted Hodge-star $\widetilde{\star}: \Lambda^k \to \widetilde{\Lambda}^{(1-k)}$ (resp. $\widetilde{\Lambda}^k \to \Lambda^{(1-k)}$), $\Lambda^k, \widetilde{\Lambda}^k$ space of all k-forms, k = 0, 1 $\frac{\partial}{\partial t}\tilde{\mathbf{h}}_{e}^{1}+\mathbf{D}^{en}\tilde{\mathbf{F}}_{n}^{u}=0.$ topol. continuity eqn.: • exterior derivative $\mathrm{d}:\Lambda^k o \Lambda^{k+1}$ ($\mathrm{d}:\widetilde{\Lambda}^k o \widetilde{\Lambda}^{k+1}$) is total deriv. $\mathrm{d}\,g^{(0)} = \partial_x g(x) dx \in \Lambda^1$ in 1d $--- \widetilde{h}_e^{(1)} AVG_u - AVG_h$ The relations between operators and spaces is illustrated in diagram (1). 0.95 $h_n^{(0)} \text{AVG}_u - \text{AVG}_h$ ω_{aa} $k\omega$ 2 We use a second order Crank-Nicolson time integrator. II. Suitable pairs of FE spaces Definitions: We introduce a double pair of compatible finite element spaces $\Lambda^0_h, \tilde{\Lambda}^0_h = CG_k$ $k\Delta x$ Vector arrays: (Continuous Galerkin) and $\Lambda_h^1, \widetilde{\Lambda}_h^1 = DG_{k-1}$ (Discontinuous Galerkin) with - For $\Lambda^0_h, \widetilde{\Lambda}^0_h$ we use a piecewise linear basis $\{\phi_l(x)\}_{l=1}^N$ -discrete 1-form $\mathbf{u}_{e}^{1} = \mathbf{M}^{ee}\mathbf{u}_{e}$ with to approximate functions, for $\Lambda^1_h, \widetilde{\Lambda}^1_h$ a piecewise constant $\mathbf{u}_e = \{u_m(t)|m=1,...N\}$, similar for $ilde{\mathbf{v}}_e^1$ and $ilde{\mathbf{h}}_e^1$ polynomial order k such that basis $\{\chi_m(x)\}_{m=1}^N$ to approximate 1-forms, e.g. -height average $\tilde{\mathbf{h}}_n^1 := \mathbf{A}^{ne} \tilde{\mathbf{h}}_n^1$ with average op. \mathbf{A}^{ne} $u_{h}^{(1)}(x,t) = \sum_{m=1}^{N} u_{m}(t) \chi_{m}(x)$, $\widetilde{u}^{)} = \sum_{l=1}^{N} \widetilde{u}_{l}(t) \phi_{l}(x) \; ,$

Mesh on period 1d-domain:

 $x_{l=1} = 0$

 $x_{l-1} \quad x_{m-1} \quad x_l \quad x_m \quad x_{l+1} \quad x_{m+1}$

$$egin{aligned} rac{\partial u^{(1)}}{\partial t} &- ilde{\star} \widetilde{q}^{(0)} F_v^{(0)} + \mathrm{d}\, B^{(0)} = 0, & rac{\partial \widetilde{v}^{(1)}}{\partial t} + ilde{\star} \widetilde{q}^{(0)} \widetilde{F}_u^{(0)} = 0, & rac{\partial \widetilde{h}^{(1)}}{\partial t} + \ & \widetilde{u}^{(0)} &= \widetilde{\star} u^{(1)}, & v^{(0)} &= \widetilde{\star} \widetilde{v}^{(1)}, & \widetilde{h}^{(1)} &= \widetilde{\star} h^{(0)}, \end{aligned}$$

$$egin{aligned} \widetilde{F}_{u}^{(0)} &:= h^{(0)}\widetilde{u}^{(0)}, \quad F_{v}^{(0)} &:= h^{(0)}v^{(0)} \quad (ext{mass fluxes}), ext{ and} \ B^{(0)} &:= gh^{(0)} + rac{1}{2}(\widetilde{u}^{(0)})^2 + rac{1}{2}(v^{(0)})^2 \quad (ext{Bernoulli function}), ext{ and} \ \widetilde{q}^{(0)}\widetilde{h}^{(1)} &= ext{d} v^{(0)} + fdx \quad (ext{potential vorticity (PV)}) \end{aligned}$$

$$egin{array}{cccc} H^1 & \stackrel{ ext{d}}{ o} & L^2 \ & igstarrow^{\pi_0} & & igstarrow^{\pi_1} \ \Lambda^0_h, \widetilde{\Lambda}^0_h & \stackrel{ ext{d}}{ o} & \Lambda^1_h, \widetilde{\Lambda}^1_h \end{array}$$

 $h_h^{(0)}, v_h^{(0)} \in \ \ \Lambda_h^0 \ \ \stackrel{ ext{d}}{ o} \ \Lambda_h^1 \ \
e \ u_h^{(1)}$ (1) $\widetilde{h}_h^{(1)}, \widetilde{v}_h^{(1)} \in \widetilde{\Lambda}_h^1 \xleftarrow{\mathrm{d}} \widetilde{\Lambda}_h^0
ightarrow \widetilde{u}_h^{(0)}$

with commuting, bounded, surjective projections (π_0, π_1) . The discrete Hodge stars $\tilde{\star}_{h}^{0}, \tilde{\star}_{h}^{1}$ map between straight and twisted spaces and are allowed to be non-invertible.

Mass and stiffness matrices: - \mathbf{M}^{nn} , \mathbf{M}^{ee} , \mathbf{M}^{ne} are metric-depend (N imes N) mass-matrices $(\mathrm{M}^{nn})_{ll'} = \int_L \phi_l(x) \phi_{l'}(x) dx$, $(\mathrm{M}^{ee})_{mm'} = \int_L \chi_m(x) \chi_{m'}(x) dx$, $(\mathbf{M}^{ne})_{ml'} = \int_{L} \chi_m(x) \phi_{l'}(x) dx$ with $\mathbf{M}^{en} = (\mathbf{M}^{ne})^T$. - $\mathbf{M}^{ne} = \mathbf{P}^{ne} \, \overline{(\Delta \mathbf{x}_e)^T}$ with metric-dependent part $\Delta \mathrm{x}_e = (\Delta x_1, \dots \Delta x_m, \dots \Delta x_N)$ and metric-free part P^{ne} - \mathbf{D}^{ne} is $(N \times N)$ stiffness matrix with metric-independent coefficients: $(\mathrm{D}^{ne})_{ml'} = \int_L \chi_m(x) rac{d\phi_{l'}(x)}{dx} dx$ with $\mathrm{D}^{en} = (\mathrm{D}^{ne})^T$.

 $x_{N+1} = I$

l = N

$$\langle ilde{\star} h_h^{(0)} v_h^{(0)}
angle + \langle \widetilde{h}_h^{(1)}, ilde{\star} g h_h^{(0)}
angle,$$

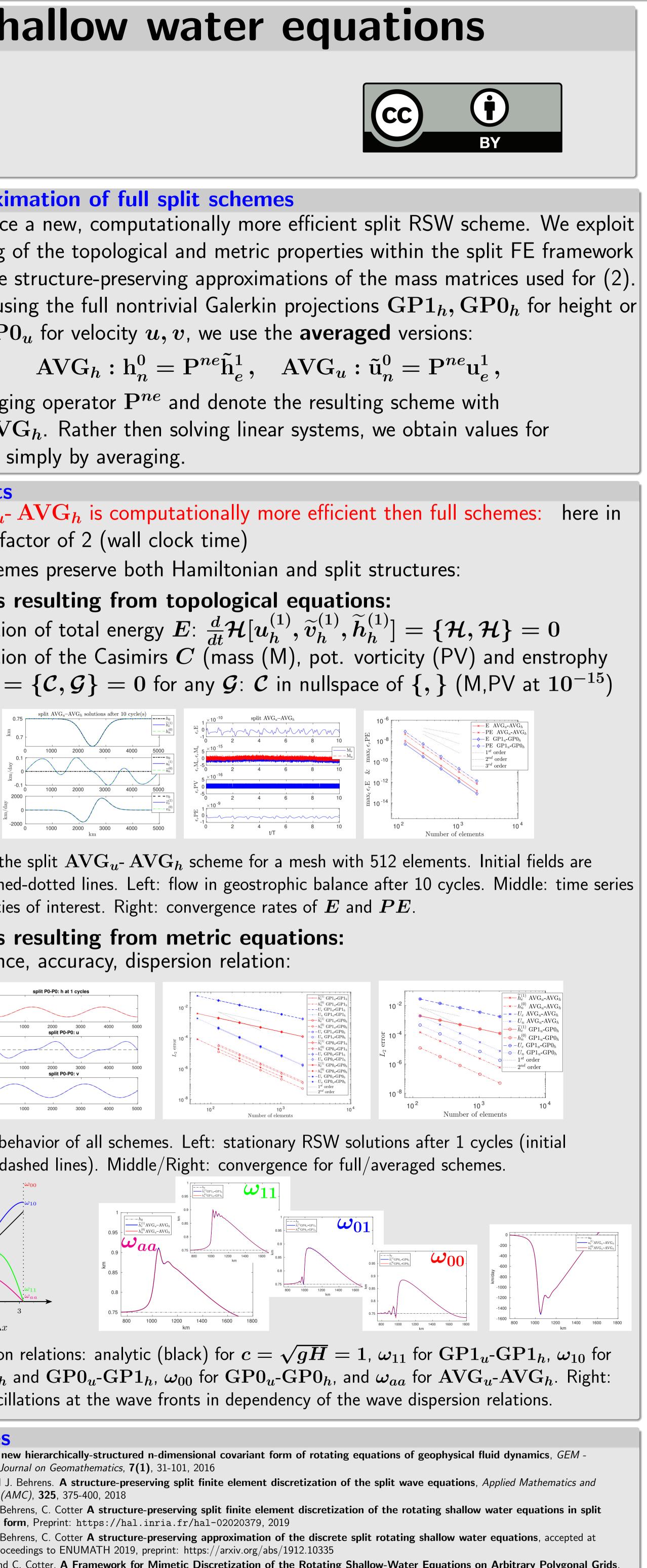
¹⁾,
$$h_h^{(0)} = h_h^{(0)}[\tilde{h}_h^{(1)}] = \tilde{\star}_h \tilde{h}_h^{(1)}$$
 (2)
from another one

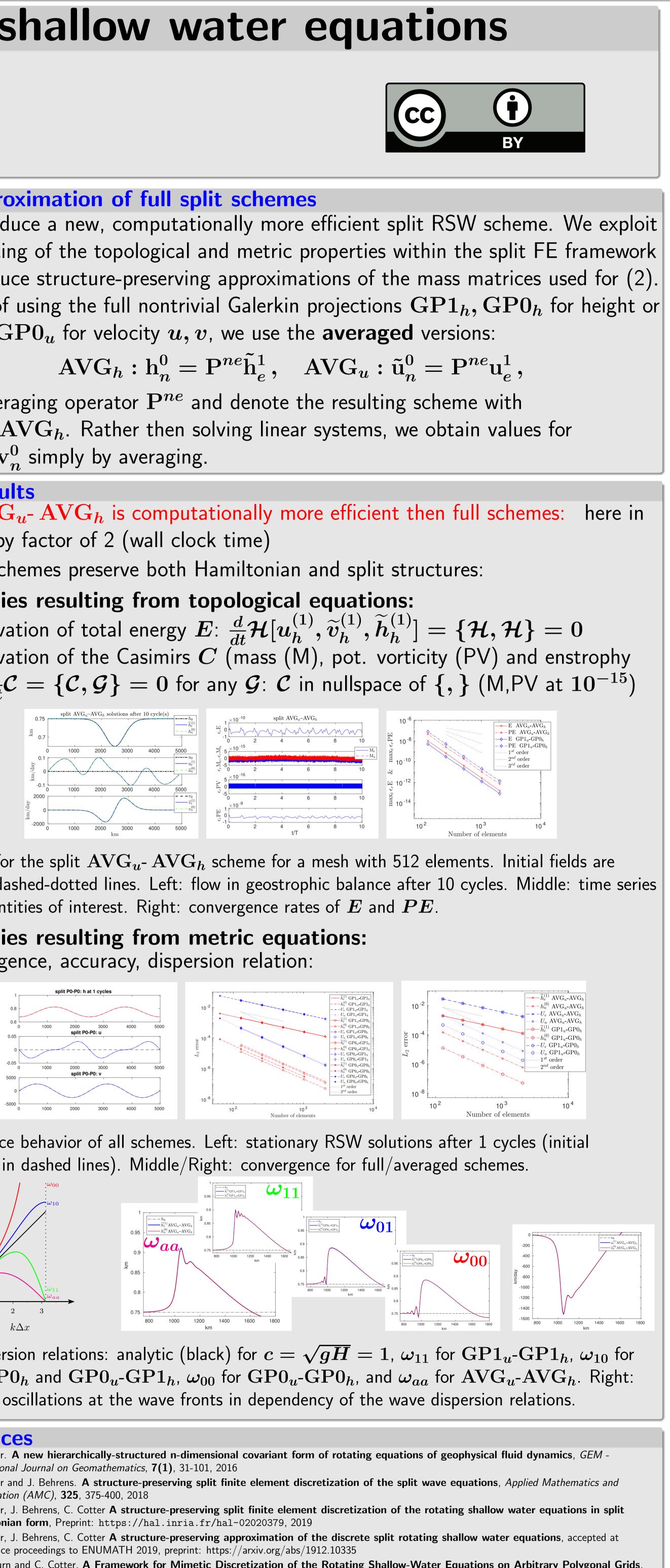
$$\langle dx
angle = 0, \quad orall \phi_h^{(0)} \in \Lambda_h^0.$$

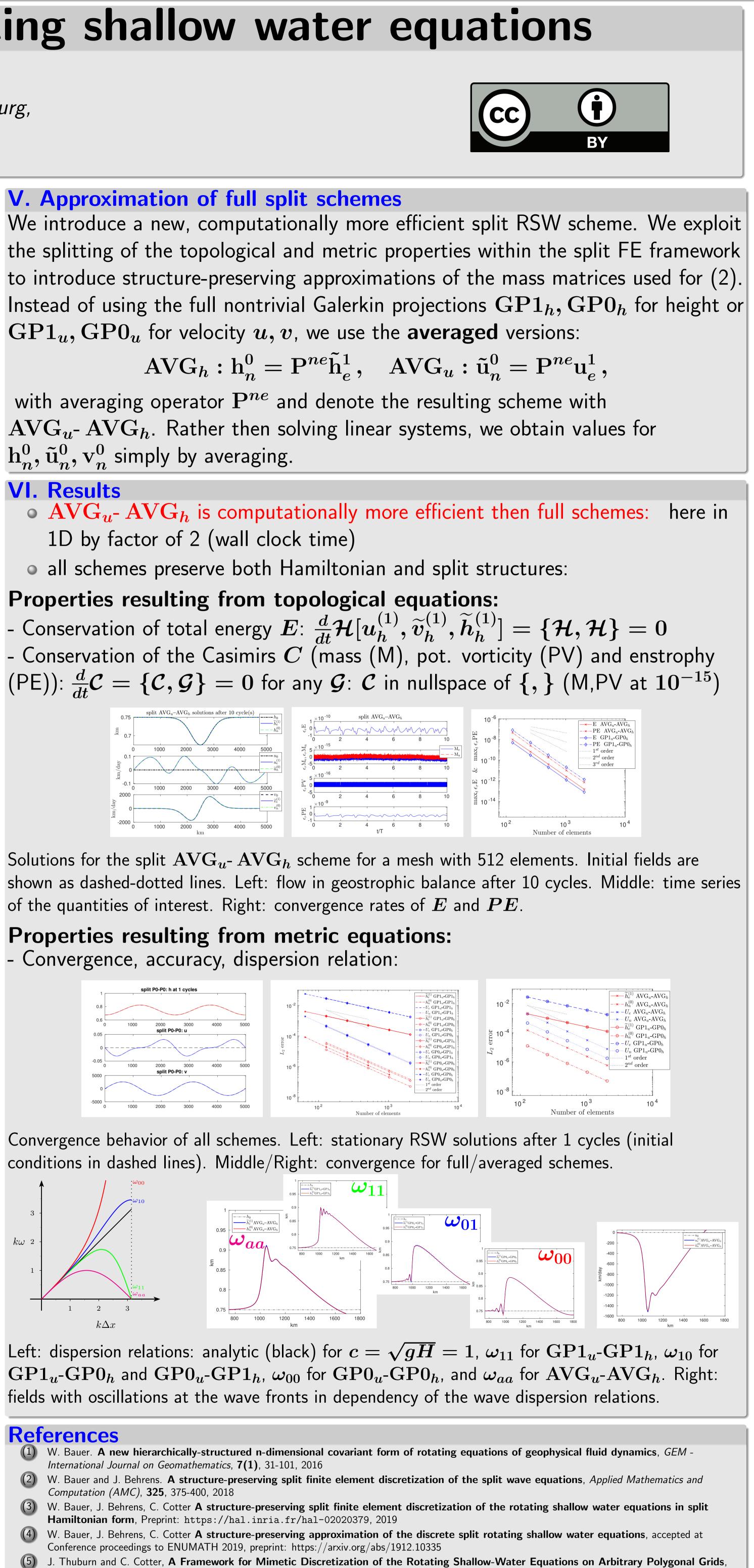
$$=0,\;rac{\partial}{\partial t} ilde{\mathrm{v}}_{e}^{1}+\widetilde{\mathrm{M}^{en}}(ilde{\mathrm{q}}_{n}^{0}\circ ilde{\mathrm{F}}_{n}^{u})=0$$

Bauer & Behrens & Cotter A structure-preserving approximation of the discrete split rotating shallow water equations

$$\operatorname{AVG}_h:\operatorname{h}_n^0=\operatorname{P}$$







References SIAM Journal on Scientific Computing, 34(3), B203-B225, 2012