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Motivation and Overview
Numerical schemes that lack structure preservation might lead to wrong statistics
of long-term (climate) simulations. Structure-preserving schemes for geophysical
fluid dynamics (GFD) can be consistently derived with finite element (FE)
methods, e.g. [5], but they are often computationally expensive (large mass
matrix) or non-local (weak form).

We suggest a novel split FE framework [2,3,4] for eqns. of GFD based on [1] with:
Key features

discrete schemes consist of prognostic topological and diagnostic metric eqns.

split schemes’ properties: structure preservation results from topological eqns.;
convergence, accuracy, dispersion relation from metric eqns.
⇒ they preserve both Hamiltonian and split structures!

structure-preservation is independent from realization of metric eqns.

all differential operators are local (by avoiding weak form)

split FEM results in efficient schemes in matrix-vector form

Conclusions and Outlook

larger choice of FE spaces, compared to standard FE, permits to derive and
study novel schemes

systematic derivations of structure-preserving approximations is decoupled
from modifications in metric equations (smoothing, adding noise, etc.)

todo: study stability, higher dimensions, higher order

I. Split y-independent (slice) RSW equations

We introduce a y-independent model case as this provides insight towards
developing schemes for the full 2D rotating shallow water (RSW) equations.
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1d f-plane: f const. Coriolis param., g graviational constant, wave speed c =
√
gH , H mean height

0-forms (functions): fluid height h(0)(x, t), velocities ũ(0)(x, t), v(0)(x, t)

1-forms: fluid height h̃(1)(x, t), velocities u(1)(x, t) = u(x, t)dx, ṽ(1)(x, t) = v(x, t)d̃x

twisted Hodge-star ?̃ : Λk → Λ̃(1−k) (resp. Λ̃k → Λ(1−k)), Λk, Λ̃k space of all k-forms, k = 0, 1

exterior derivative d : Λk → Λk+1 (d : Λ̃k → Λ̃k+1) is total deriv. d g(0) = ∂xg(x)dx ∈ Λ1 in 1d

The relations between operators and spaces is illustrated in diagram (1).

II. Suitable pairs of FE spaces

We introduce a double pair of compatible finite element spaces Λ0
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(0)
h

(1)

with commuting, bounded, surjective projections (π0, π1). The discrete Hodge
stars ?̃0

h, ?̃
1
h map between straight and twisted spaces and are allowed to be

non-invertible.

III. Split Hamiltonian FE discretization of split RSW

Let H : Λ1 × Λ̃1 × Λ̃1→ R be the Hamiltonian functional of the split slice
RSW model, defined by
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in which [ ] indicates the dependency of a function from another one.

We define the (almost) Poisson bracket {, } as
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Then, the dynamics for any functional F : Λ1 × Λ̃1 × Λ̃1→ R is given by
d
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(1)
h , h̃

(1)
h ] = {F ,H}.

The discrete Hodge star operators ?̃h in (2) are realized by nontrivial Galerkin
projections (GP1h,GP0h,GP1u,GP0u) (see IV.).

IV. Family of split P0-P1 schemes

The introduction of double pairs of compatible FE spaces enriches the choice of
potential schemes. For the low order P0-P1 double pairs, we find the following
family of split low-order (P0-P1) FE schemes, consisting of one set of topological
equations and 4 combinations of metric closure equations: GP1u −GP1h,
GP1u −GP0h/GP0u −GP1h, or GP0u −GP0h, cf. [2]:
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topol. continuity eqn.:
∂
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We use a second order Crank-Nicolson time integrator.

Definitions:

- For Λ0
h, Λ̃

0
h we use a piecewise linear basis {φl(x)}Nl=1

to approximate functions, for Λ1
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1
h a piecewise constant

basis {χm(x)}Nm=1 to approximate 1-forms, e.g.
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Vector arrays:
-discrete 1-form u1

e = Meeue with

ue = {um(t)|m = 1, ...N}, similar for ṽ1
e and h̃1

e

-height average h̃1
n := Aneh̃1

e with average op. Ane

Mass and stiffness matrices:
- Mnn, Mee, Mne are metric-depend (N ×N) mass-matrices:
(Mnn)ll′ =

∫
L φl(x)φl′(x)dx,

(Mee)mm′ =
∫
L χm(x)χm′(x)dx,

(Mne)ml′ =
∫
L χm(x)φl′(x)dx with Men = (Mne)T .

- Mne = Pne (∆xe)
T with metric-dependent part

∆xe = (∆x1, . . .∆xm, . . .∆xN) and metric-free part Pne.
- Dne is (N ×N) stiffness matrix with metric-independent
coefficients:
(Dne)ml′ =

∫
L χm(x)dφl′(x)

dx
dx with Den = (Dne)T .

V. Approximation of full split schemes
We introduce a new, computationally more efficient split RSW scheme. We exploit
the splitting of the topological and metric properties within the split FE framework
to introduce structure-preserving approximations of the mass matrices used for (2).
Instead of using the full nontrivial Galerkin projections GP1h,GP0h for height or
GP1u,GP0u for velocity u, v, we use the averaged versions:

AVGh : h0
n = Pneh̃1

e , AVGu : ũ0
n = Pneu1

e ,

with averaging operator Pne and denote the resulting scheme with
AVGu- AVGh. Rather then solving linear systems, we obtain values for
h0
n, ũ

0
n, v

0
n simply by averaging.

VI. Results
AVGu- AVGh is computationally more efficient then full schemes: here in
1D by factor of 2 (wall clock time)

all schemes preserve both Hamiltonian and split structures:

Properties resulting from topological equations:
- Conservation of total energy E: d

dt
H[u

(1)
h , ṽ

(1)
h , h̃

(1)
h ] = {H,H} = 0

- Conservation of the Casimirs C (mass (M), pot. vorticity (PV) and enstrophy
(PE)): d

dt
C = {C,G} = 0 for any G: C in nullspace of {, } (M,PV at 10−15)
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Solutions for the split AVGu- AVGh scheme for a mesh with 512 elements. Initial fields are
shown as dashed-dotted lines. Left: flow in geostrophic balance after 10 cycles. Middle: time series
of the quantities of interest. Right: convergence rates of E and PE.

Properties resulting from metric equations:
- Convergence, accuracy, dispersion relation:
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Convergence behavior of all schemes. Left: stationary RSW solutions after 1 cycles (initial
conditions in dashed lines). Middle/Right: convergence for full/averaged schemes.
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Left: dispersion relations: analytic (black) for c =
√
gH = 1, ω11 for GP1u-GP1h, ω10 for

GP1u-GP0h and GP0u-GP1h, ω00 for GP0u-GP0h, and ωaa for AVGu-AVGh. Right:
fields with oscillations at the wave fronts in dependency of the wave dispersion relations.

References
(1) W. Bauer. A new hierarchically-structured n-dimensional covariant form of rotating equations of geophysical fluid dynamics, GEM -

International Journal on Geomathematics, 7(1), 31-101, 2016
(2) W. Bauer and J. Behrens. A structure-preserving split finite element discretization of the split wave equations, Applied Mathematics and

Computation (AMC), 325, 375-400, 2018
(3) W. Bauer, J. Behrens, C. Cotter A structure-preserving split finite element discretization of the rotating shallow water equations in split

Hamiltonian form, Preprint: https://hal.inria.fr/hal-02020379, 2019

(4) W. Bauer, J. Behrens, C. Cotter A structure-preserving approximation of the discrete split rotating shallow water equations, accepted at
Conference proceedings to ENUMATH 2019, preprint: https://arxiv.org/abs/1912.10335

(5) J. Thuburn and C. Cotter, A Framework for Mimetic Discretization of the Rotating Shallow-Water Equations on Arbitrary Polygonal Grids,
SIAM Journal on Scientific Computing, 34(3), B203-B225, 2012

Bauer & Behrens & Cotter A structure-preserving approximation of the discrete split rotating shallow water equations

https://hal.inria.fr/hal-02020379

