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We introduce a new, computationally more efficient split RSW scheme. We exploit
the splitting of the topological and metric properties within the split FE framework
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to introduce structure-preserving approximations of the mass matrices used for (2).
Instead of using the full nontrivial Galerkin projections GP1;, GPOy for height or

UH
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I11. Split Hamiltonian FE discretization of split RSW

Let 2 : AL x Al X Al — R be the Hamiltonian functional of the split slice
RSW model, defined by
1<

Hlwy,, 5, by =

Motivation and Overview

Numerical schemes that lack structure preservation might lead to wrong statistics
of long-term (climate) simulations. Structure-preserving schemes for geophysical
fluid dynamics (GFD) can be consistently derived with finite element (FE)

. (0)~ 1, _1) - ~1) -
_ . wy, *hy @) + (@), % o) + (g Jghy),
methods, e.g. [5], but they are often computationally expensive (large mass 2

matrix) or non-local (weak form).

We suggest a novel split FE framework [2,3,4] for eqns. of GFD based on [1] with:
Key features

o discrete schemes consist of prognostic topological and diagnostic metric egns.

o split schemes’ properties: structure preservation results from topological eqgns.;

convergence, accuracy, dispersion relation from metric eqns.
—> they preserve both Hamiltonian and split structures!

o structure-preservation is independent from realization of metric eqns.
o all differential operators are local (by avoiding weak form)
o split FEM results in efficient schemes in matrix-vector form

Conclusions and Outlook

o larger choice of FE spaces, compared to standard FE, permits to derive and
study novel schemes

o systematic derivations of structure-preserving approximations is decoupled
from modifications in metric equations (smoothing, adding noise, etc.)

o todo: study stability, higher dimensions, higher order

I. Split y-independent (slice) RSW equations

We introduce a y-independent model case as this provides insight towards

developing schemes for the full 2D rotating shallow water (RSW) equations.
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using the definitions
1/4:’150) .= h0gO), F,U(O) := hOv©®  (mass fluxes), and
(0) © 4 Lgyz 1,02 functi
B := gh'" + E(u )+ 5(’0 )*  (Bernoulli function), and
gOrM = dv® 4 fdx (potential vorticity (PV))

1d f-plane: f const. Coriolis param., g graviational constant, wave speed ¢ = +/gH, H mean height
O-forms (functions): fluid height h(9)(x, t), velocities u(® (a, t), v(? (x, t)

1-forms: fluid height RV (z, t), velocities u®(z, t) = u(x, t)dz, 9V (z, t) = v(z, t)dz

twisted Hodge-star % : A¥ — A(1—F) (resp. Ak — AR Ak A¥ space of all k-forms, k = 0, 1
exterior derivative d : A¥ — AFtL (d : A¥ — AFH1) is total deriv. d g(® = 8,g(x)dz € Al in 1d

The relations between operators and spaces is illustrated in diagram (1).
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Il. Suitable pairs of FE spaces

We introduce a double pair of compatible finite element spaces A7, A = CGL

(Continuous Galerkin) and A}, Al = DG}y, (Discontinuous Galerkin) with
polynomial order k such that
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Aps Ay — Ay Ay, h,(ll),f??,(ll) e A; & A} > 6,(10)

with commuting, bounded, surjective projections (7o, 7v1). The discrete Hodge

stars 7’\32, S(—}l map between straight and twisted spaces and are allowed to be

non-invertible.

with metric equations:
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in which [] indicates the dependency of a function from another one.

We define the (almost) Poisson bracket {, } as
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with PV g'" defined implicitly by

%6, G VOrMY + (A, 5"y — (36, fdz) =0, Vo” € AL,

Then, the dynamics for any functional F : A! X Al x A = R s given by

d 1) ~(1) (1
—Flw,, 5, by = {F, H1}.

The discrete Hodge star operators xp, in (2) are realized by nontrivial Galerkin
projections (GP1;, GP0,, GP1,, GPO,) (see IV.).

IV. Family of split PO-P1 schemes

The introduction of double pairs of compatible FE spaces enriches the choice of
potential schemes. For the low order PO-P1 double pairs, we find the following
family of split low-order (P0-P1) FE schemes, consisting of one set of topological
equations and 4 combinations of metric closure equations: GP1,, — GP1,,

GPlu — GPOh/GPOu — GPlh, or GPOU — GPOh, cf. [2]:
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We use a second order Crank-Nicolson time integrator.

Definitions:

Vector arrays:

-discrete 1-form ué = M°®€u, with

u. = {un(t)jm =1,...N}, similar for ¥} and h!

-height average Flf'l,b = A”eflé with average op. A™¢

- For A}, A} we use a piecewise linear basis {Di(x)}Y,
to approximate functions, for A}L, A}L a piecewise constant
basis {Xxm ()} _, to approximate 1-forms, e.g.

uy (@,t) = SNt (8)xm (),
ay) = SN w(t)du(x)

Mesh on period 1d-domain:

Mass and stiffness matrices:

(M™)w = [; ¢u(x) v (x)de,

(Mee)mm' — fL Xm(m)Xm’(w)dw,

(Mne)ml/ — fL Xm(w)(bl/(:c)dw with M®" = (Mne)T_

- M"® = P (Ax.)T with metric-dependent part

Ax, = (Axy,... A%y, ... Axy) and metric-free part P™€.

- D™ is (IN X N) stiffness matrix with metric-independent
coefficients:

(D)t = [ X () 2212 da with Dem = (D)7
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- M"™™, M*®¢, M"™ are metric-depend (IN X IN') mass-matrices:

GP1,, GPO,, for velocity u, v, we use the averaged versions:
AVGy : h® = P™h!, AVG,: i’ = P™ul,
with averaging operator P"¢ and denote the resulting scheme with

AV G,- AV(5,. Rather then solving linear systems, we obtain values for
hg, ﬁg, V% simply by averaging.

VI. Results
o AVG,- AVGy, is computationally more efficient then full schemes:

1D by factor of 2 (wall clock time)
o all schemes preserve both Hamiltonian and split structures:

here In

Properties resulting from topological equations:

- Conservation of total energy E: %’H[ug), 17,(11), h,(ll)] ={H,H} =0

- Conservation of the Casimirs C' (mass (M), pot. vorticity (PV) and enstrophy
(PE)): %C = {C,G} = 0 for any G: C in nullspace of {, } (M,PV at 10~1°)

split AVG,~AVG;, solutions after 10 cycle(s)
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Solutions for the split AV(z,- AV, scheme for a mesh with 512 elements. Initial fields are
shown as dashed-dotted lines. Left: flow in geostrophic balance after 10 cycles. Middle: time series
of the quantities of interest. Right: convergence rates of EZ and PE.

Properties resulting from metric equations:
- Convergence, accuracy, dispersion relation:

split PO-PO: h at 1 cycles
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Convergence behavior of all schemes. Left: stationary RSW solutions after 1 cycles (initial

conditions in dashed lines). Middle/Right: convergence for full /averaged schemes.
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Left: dispersion relations: analytic (black) for ¢ = v/gH = 1, wq; for GP1,-GP1;, wqg for

GP1,-GPO;, and GPO0,-GP1;, wyg for GPO,-GPO;, and w,, for AVG,-AVGy,. Right:
fields with oscillations at the wave fronts in dependency of the wave dispersion relations.
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