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Grand challenges in Land Surface Hydrology
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Source © NASA
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“To develop the ability to globally
monitor and predict the movement

of water on the landscape at
scales less than 1 km”
Wood et al. WRR 2011

“Everywhere and locally relevant”
Bierkens et al. HP 2014
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Grand challenges in Land Surface Hydrology
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© L. Samaniego, O. Rakovec UFZ 08.2019

© L. Samaniego, O. Rakovec UFZ 08.2019

Drought Exceptional Severe

< 2% 2-5% 5-10%
Moderate

10-20% 20-30%
Abnormal

Saturated
30-50% 50-70% 70-80% 80-90% >90%

Soil Moisture Index

Leipzig

Leipzig

Leipzig

Drought index SMI
based on mHM with E-OBS v18

for Aug. 2018
© Authors. All rights reserved.

“To develop the ability to globally
monitor and predict the movement

of water on the landscape at
scales less than 1 km”
Wood et al. WRR 2011

“Everywhere and locally relevant”
Bierkens et al. HP 2014
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Grand challenges in Land Surface Hydrology
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Nested ICON Model
seamless local mesh refinement

Source © DWD (Reinert et al.), MPI-M(Giorgetta et al.), 2016

“Develop scale-independent
land surface scheme for

climate models”
IPCC AR5, 2014

Bauer et al, Nature, 2015
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Grand challenges in Land Surface Hydrology
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“Seamless prediction of the earth system, from minutes to
months”

Source © WMO-1176, Shutterstock 2015

“Reduce uncertainties in the
representation of processes in

numerical models relevant to the
improvement of predictive skill”
G. Brunet, S. Jones and B. Mills,

2015



Are we ready for high-resolution
hydrological modeling
at continental scales?

TDX Palo Duro Canyon
© DLR
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Performance of the state-of-the-art GHMs
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Beck et al. WRR 2016

Goal:
Improve the performance of the global mHM model above
the current state-of-the-art
www.ufz.de/mhm

www.ufz.de/mhm
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Parameterization at meso/macro scales
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Dooge, 1982 p. 269 (Eagleson edt.)
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Multiscale data verification & parameter estimation
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MPR 

Parameter estimation

Flux matching condition

Sensitivity
analysis

Seamless predictions

Samaniego et al. WRR 2010, Rakovec et al. JHM 2016, Samaniego et al. HESS 2017

Target
scales

Data
102 m Regularization functions
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Nested model evaluation
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Rakovec et al. JHM, 2016 Parameter estimation
streamflow only
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Inverse modelling based on streamflow
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Evaluation variable
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Variables:

Original
Standardized

Rakovec et al., JHM 2016
n = 400 Pan-EU basins

Constraining parameters
against streamflow is
a necessary, but not a
sufficient condition to get
robust estimates of E, TWS,
SM.

n TWS: GRACE (1◦ × 1◦)

n E: FLUXNET (0.5◦ × 0.5◦)

n SM: ESA-CCI (0.25◦ × 0.25◦)



Development of a Massive
hybrid MPI/OpenMP scheme for mHM
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Research goals
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mHM


• Setup a nested models for Q, TWS, and ET at their native resolutions

• Estimate γ̂best


• 5500 GRDC streamflow series
• FLUXNET ET
• GRACE TWS anomaly

Selected GRDC
basins© JUWELS

www.fz-juelich.de
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Multi-layer hybrid parallelization scheme
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ET (0.5◦) & TWS (1◦) Q (0.1◦)

Layer 1
MPI

MPI com 1 MPI com i MPI com i+1 MPI com n

. . . . . . . . . . . .. . . . . .

⇓ ⇓

Layer 2
MDF +
MPI

Layer 3
OpenMP

M. Kaluza et al GMD (2020, to be submited).
© Authors. All rights reserved.



www.ufz.de

Parallelization of streamflow routing: a hard problem

11

mHM streamflow simulation on July 2002
European floods

© Authors. All rights reserved.

n A river network is a graph.

n Performing time dependent
operations in a graph is hard to
parallelize.

n Even if it can be paralellized, it is
even harder to get linear scaling.

n Existing algorithms are not efficient
for large networks and HPC
environments with thousands of
cores.
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Domain decomposition for streamflow routing
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n Random allocation

n Li et al. (2011)

n Pfafstetter coding
(Clark et al.)

n Key variables:
� Process Id p
� Time slot t

n Our proposdsal: MDF ...

0

1

2

3

4

5

6

7

8

Process sequence
Danube: 26507 cells of 5×5 km2

© Authors. All rights reserved.
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MPI decomposition of “forests” (MDF)
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Wtp

Idle time for
slot t and
process p

Parallelized with
OpenMP
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Ωi

Danube
basin

Process [p]

T
im
e
sl
ot

[t
]

M. Kaluza et al GMD, 2020.

© Authors. All rights reserved.

0 - 2

3 - 5

6 - 8

9 - 11

12 - 14

15 - 17

18 - 20

21 - 23

24 - 30

Slot time t

© Authors. All rights reserved.
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MPI decomposition of “forests” (MDF)

13

Wtp

Idle time for
slot t and
process p

Parallelized with
OpenMP
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Ωi
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M. Kaluza et al GMD, 2020.

© Authors. All rights reserved.

“Combinatorial scheduling NP-problem” aiming at:

min
P,T

[
T
( n⋃
i=1

Ωi, a, b, P
)
,

P∑
p=1

T∑
t=1

Wtp

]
Subject to cTP < B



www.ufz.de

MPI decomposition of “forests” (MDF)

13

Wtp

Idle time for
slot t and
process p

Parallelized with
OpenMP
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M. Kaluza et al GMD, 2020.

© Authors. All rights reserved.

“Combinatorial scheduling NP-problem” aiming at:

min
P,T

[
T
( n⋃
i=1

Ωi, a, b, P
)
,

P∑
p=1

T∑
t=1

Wtp

]
Subject to cTP < B

T optimal number of time slots
B budget in core-h

T ≥ max(∆i(a))
P optimal number of processes
∆i network depth of basin (Ωi)
a, b optimal sub-basin size, maximum buffer size (hardware)
n, t indices for # basins and time slots
c nr. cores per process (hardware)
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MPI decomposition of “forests” (MDF)
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Wtp

Idle time for
slot t and
process p

Parallelized with
OpenMP
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M. Kaluza et al GMD, 2020.

© Authors. All rights reserved.
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Layer 1: Speedup of a strong-scaling test (ET & TWS)
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S =
T̃1

Tp

T̃1 ≈10T10

n → super-linear
n Cache-effect induced by

reducing the problem to fit in
the “fast” RAM instead of
the “slow” RAM

n Shorter distances in memory
access (4 CPUs→8 GB RAM)

Number of processes

T~
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T
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1 Process uses 96 CPUs
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Layer 1: Parallel efficiency of a weak-scaling test
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E =
T1

Tp

n → optimal
n NOTE: The problem

size per processor stays
fixed as more processors
are added.
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1 Process uses 96 CPUs
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Layer 2: Speedup of a strong-scaling test (Q)

16

S =
T̂1

Tp

n Routing → is the limiting
factor

n MDF-v1 scales up to 5760 CPUs

n Test has 307 000 links

n Globe at 0.1◦: ≈ 1 350 000 links
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Layer 3: Speedup of a strong-scaling test (OpenMP)
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S =T1/Tp

n → sub-linear
n Almost linear up to 12 cores

n Inefficient for many CPUs
becuase of fast-RAM limitations.

n But, not critical compared to
Layers 1 and 2
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Model evaluation based on

GRDC streamflow gauges, GRACE TWS, FLUXNET ET
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Global results (no calibration)
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#5315 basins

NSEmon

C
um

. f
re

qu
en

cy
 [−

]

−1.0 −0.5 0.0 0.5 1.0
0.0

0.2

0.4

0.6

0.8

1.0
ERA−5
MSWEP

#5315 basins

NSEday

C
um

. f
re

qu
en

cy
 [−

]

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0
ERA−5
MSWEP

Median NSE (mHM, uncalibrated) = 0.40
Median NSE (other HMs) = -0.09
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Evolution of the combined objective function (OF)
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iteration
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OF related with efficiency of global
fields of ET and TWSA

Next steps:

n Include 50 samples (random but
fulfilling water balance related
criteria) of 250 GRDC basins in the
combined OF.

n Perform cross-validation.

n Expected optimization budget: 2.5
million core-hours.
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Correlation between simulated TWSa (mHM) & GRACE
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Rakovec et al. 2020 (in prep.).
Intermediate results.© Authors. All rights reserved.
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Correlation between simulated ETa (mHM) & FLUXNET
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Rakovec et al. 2020 (in prep.). The Poor poorperformance of ET in the Amazon
and other tropical regions in under investigation. Plausible reasons: model, data, both?

Intermediate results.© Authors. All rights reserved.
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Estimated runoff → flood event
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Runoff mm/month during July 2013.
Shows the extrem increase of runoff generation during 2013 India Flood

Intermediate results. © Authors. All rights reserved.
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Estimated soil moisture → drought events
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Soil Moisture Index (simulated SM quantiles) during July 2019.
Shows the extent of the 2019 EU-drought (SMI<0.2)

Intermediate results. © Authors. All rights reserved.
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Estimated TWS anomaly → drought event
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Simulated TWS anomaly during August 2010.
Shows the extent of the drought over Rusia

Intermediate results. © Authors. All rights reserved.
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Conclusions and Outlook
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n Nested multiscale parameter estimatons are possible only if the model
exhibits a scale-invariant parameterization (mHM+MPR)

n Uncalibrated mHM+MPR are already better than the state-of-the-art model
results reported in Beck et al. WRR

n MDFv1 is scalling well but river routing remains as the limiting factor
n Ongoing steps:

� Conclude scaling tests
� Perform the parameter estimation with

2.5e6 core-h budget
@ the JUWELS supercomputer

� Estimate uncertainties of water fluxes

MPR 

Parameter estimation

Flux matching condition

Sensitivity
analysis

Seamless predictions
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