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Internal Solitaryolike Waves (ISWs) can be described by various theories including

the DJL equation which is formally equivalent to the full stratified Euler equations.
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In the presence of background shear these are invalidated when the background

velocity matches the propagation speed (i.e. a critical layer forms).

There are fixes in the literature based on perturbation theory, but in practice

computation of exact ISW's fails.

Background shear is subtle and even when it doesn’t make theory fail it can modify

waves a considerable amount, as the next slide shows
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Fully nonlinear ISW's with Background Shear

Stastna and Lamb, PoF, 2002
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In a series of numerical experiments we returned to the classical stratified
adjustment problem with shear to probe the evolution of large amplitude waves in
the presence of a background current that was taken to have a surtace-trapped,

exponential form.

In particular we wanted to know if coherent waves form (solitary or not) and

whether they separate from their tail (and the form of this tail).

The simulation is in a periodic domain allowing us to see if waves survive collisions,

and how they interact with even stronger shear associated with the tail.
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Lots remains to do; resolution tests; wave coherence and at least some 3D
simulations (the high resolution needed to accurately resolve the near surface

region is already expensive in 2D).

The parameter space is quite rich, so while I chose one interesting aspect to show;
we have looked at other parameter regions in which it is possible to probe the

limits of the DJL a bit more closely.

The upshot is that naturally occurring ISW's are more coherent than theory would

suggest.
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