Electron Bernstein waves driven by electron crescents near electron diffusion region

Wenya Li^{1,2}, D. B. Graham², B. B. Tang¹, A. Vaivads³, M. André², K. Min⁴, K. Liu⁵, K. Fujimoto⁶, P.-A. Lindqvist³, K. Dokgo⁷, C. Wang¹, and J. Burch⁷.

¹NSSC, China; ²IRFU, Sweden; ³KTH, Sweden; ⁴Chungnam National Univ., R. Korea; ⁵SUSTC, China; ⁶Beihang Univ., China; ⁷SwRI, USA.

May, 2020 @ EGU.

INSTITUTET FÖR RYMDFYSIK

Swedish Institute of Space Physics

1. Plasma Waves in and near electron diffusion regions

1. Plasma Waves in and near electron diffusion regions

2. Electron diffusion region at dayside magnetopause

Electron diffusion region encounter

- B: B_L turning from negative to positive; Guide field ~12 nT; |B| minimal ~8.2 nT;
- 2. Number density decrease
- 3. Northward ion outflow
- 4. Strong electron jets with agyrotropic features
- 5. Strong Te anisotropy inside MSP separatrix
- 6. Strong \textbf{E}_{N} at the MSP separatrix and wave activities

[Li, Graham+, NatureComms, 2020]

• EBWs at the electron-scale Hall current reversal

- Strong Hall magnetic B_M on MSH side of neutral line
- 2. Reversal of the strong Hall current \boldsymbol{J}_{L} at the \boldsymbol{B}_{M} peak
- Crescent-shaped electron distributions at the times of Hall current J_L peaks
- 4. Electron Bernstein waves observed at the \textbf{J}_{L} reversal

[*Li, Graham+*, NatureComms, 2020]

• EBWs at the electron-scale Hall current reversal

1. ~60 mV/m E fluctuations

2. E spectral peaks
separately by f_{ce} harmonics
3. extremely weak (~0.02 nT)

3. extremely weak (~0.02 nT) B fluctuations

4. Quasi-linear; nearly perpendicular to ambient **B**

• EBWs driven by electron crescents

- positive f_e slope along crescents
- 2. direction with largest positive slope is close to δE_{max}

3.
$$W_c = \frac{m_e n_c v_c^2}{2} \sim 10^4 W_E$$
$$W_E = \frac{\epsilon_0 |\delta \mathbf{E}|^2}{2}$$

4. positive slope velocity 8000 km/s —> V_{ph} ; frequency of peak wave power ~5.7 kHz; wavelength (1.4 km) is close to ρ_e

• EBWs driven by electron crescents

4. Summary

• Electron Bernstein waves driven by crescents

- 1. Large-amplitude EBWs at the electron-scale boundary of the Hall current reversal near an EDR encounter.
- 2. The EBWs are driven by electron crescents.
- 3. The EBWs electric potentials are large enough to thermalize and diffuse the electron crescents near the EDR.

5. EBWs versus Upper-Hybrid waves

