

Lomonosov Moscow State University Faculty of Geology Department of Geophysics

Gravity inversion with depth normalization

Chepigo L.S. Lygin I.V. Bulychev A.A.

Introduction

• The inverse problem of gravity exploration (e.g. 2D problem) for mesh model can be formulated as a solution of an underdetermined system of linear algebraic equations:

$$A\sigma = V_z, \tag{1}$$

A – gravity effects' matrix, σ – vector of density, V_z – observed gravity field

$$A = \begin{vmatrix} Vz_{11}(x_{1}) & Vz_{12}(x_{1}) & \dots & Vz_{MN}(x_{1}) \\ Vz_{11}(x_{2}) & Vz_{12}(x_{2}) & \dots & Vz_{MN}(x_{2}) \\ \dots & \dots & \dots & \dots \\ \dots & \dots & \dots & \dots \\ Vz_{11}(x_{L}) & Vz_{12}(x_{L}) & \dots & Vz_{MN}(x_{L}) \end{vmatrix} \qquad \qquad \sigma = \begin{vmatrix} \sigma_{11} \\ \sigma_{12} \\ \dots \\ \sigma_{1N} \\ \sigma_{1N} \\ \sigma_{21} \\ \dots \\ \sigma_{M1} \\ \dots \\ \sigma_{MN} \end{vmatrix} \qquad \qquad V_{z} = \begin{vmatrix} V_{z}(x_{1}) \\ V_{z}(x_{2}) \\ \dots \\ \dots \\ V_{z}(x_{L}) \\ V_{z}(x_{L}) \end{vmatrix}$$

Introduction

• A standard approach to solving this problem is to minimize the loss function:

$$L = \|A\sigma - V_z\|^2 + \frac{1}{C} \|\sigma^2 - \sigma_a^2\|^2 \to min$$
⁽²⁾

 σ_a – vector of prior density, *C* – inverse of regularization strength

• Traditionally, the minimum of the loss is found using optimization methods, in particular the gradient descent method:

$$\sigma_{n+1} = \sigma_n - \alpha \nabla_\sigma L \tag{3}$$

 α - constant or changes during iterations (but constant for each cell, i.e. constant within iteration)

Problem

- Underdetermined system has an infinite number of solutions;
- Loss function L is most sensitive to near-surface cells, therefore, the traditional approach allows to select models with a contrast near-surface layer. Such models can be used, for example, for source-based continuation. However, they are not suitable for geological interpretation:

Proposed solution

- Since sensitivity of loss function decreases with depth, a variable parameter α value can be used to solve this problem.
- For example, α can be depth dependent function. Particularly, α can be $\sim z^n$, the power n is a hyperparameter and is selected by the interpreter

Test model #1

- The first test model is 2D and consists of two anomalous objects: an infinite horizontal cylinder and a vertical rectangular prism.
- Length of profile is 5 km, maximum depth is 1 km;
- Theoretical gravity of this model was used as observed field;
- No prior data used;

Table 1. Test model #1 parameters

Parameter	Cylinder	Prism
Excess density (g/cm ³)	0.5	0.3
Z top (m)	150	100
Z bottom (m)	250	450
X min (m)	950	4000
X max (m)	1050	4100
$\Delta V_z \max (mGal)$	0.26	0.59

• For 2D gravity modeling we used GravInv2D software (<u>www.gravinv.ru</u>)

Fig. 3 Test model # 1 with calculated gravity

Result #1

Fig. 4 Inversion results: *a*) $\alpha = \text{const}; b) \alpha \sim z^{1.5}$. Blue dots – gravity field of test model; Red line – gravity field of selected model.

- RMS between observed and calculated field < 1% in both cases;
- Contrast near-surface layer at constant α;
- α, increasing with depth allows to fit the model, that better shows the position of anomalous objects;
- Both results allow to define horizontal position of objects;
- Both results represent density underestimation.

Test model #2

- The second model is 3D and consists of three layers (two boundaries). First boundary has inlier, second boundary has fault.
- Size of area is 10 km x 10 km, maximum depth is 1.5 km;
- No prior data used;
- For 3D gravity modeling we used GravInv3D software (*www.gravinv.ru*)

Parameter	Inlier	Fault
Excess density (g/cm ³)	0.3	0.2
Z top (m)	770	1000
Z bottom (m)	800	1040
X min (m)	5500	6000
X max (m)	6500	6000
Y min (m)	2000	- ∞
Y max (m)	4000	$+\infty$
$\Delta V_z \max (mGal)$	0.10	0.29

Fig. 5 Test model #2 with calculated gravity

Result #2

Fig. 6 Inversion results: *a*) $\alpha = \text{const}; b) \alpha \sim z^{1.5}$

- RMS between observed and calculated field < 1% in both cases;
- Contrast near-surface layer above inlier and positive excess densities at all depths above fault ($\alpha = \text{const}$);
- Extremum of density near mass center of inlier and maximum of density gradient near fault ($\alpha \sim z^{1.5}$);
- Both results allow to define horizontal position of objects;
- Both results represent density underestimation.

Result #2

- Maximum of top density anomalous area corresponds to mass center of the inlier;
- Area of density gradient maximum (bottom anomalous area) corresponds to the top of fault;

Fig. 7 Inversion result ($\alpha \sim z^{1.5}$) with test model

Conclusions

- Using of depth dependent descent step allows to include deep cells in model selection process;
- Tests represent that models, selected with depth dependent α , have density extremum at points, close to mass center, if anomalous object is isolated. Also the approximate boundaries of the object can be highlighted;
- In the case of semi-infinite objects, the proposed approach allows to estimate the depth of the upper edge by maximum of density gradient;
- To achieve the best estimate, we propose to select several models with different values of α power from the interval [1; 2];
- Proposed approach allows to estimate approximate position of anomalous objects even without prior data;
- Prior data must be used to determine the anomalous density and more precise boundaries.

Thank you for your attention!