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Introduction 

• The inverse problem of gravity exploration (e.g. 2D problem) for mesh 

model can be formulated as a solution of an underdetermined system of 

linear algebraic equations: 
 

 

     (1)                            

 

 A – gravity effects’ matrix, σ – vector of density, Vz – observed gravity field 
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Introduction 

• A standard approach to solving this problem is to minimize the loss 

function: 

 

(2) 

  

σa – vector of prior density,  C – inverse of regularization strength 

 

• Traditionally, the minimum of the loss is found using optimization 

methods, in particular the gradient descent method: 

 

(3) 

 

  - constant or changes during iterations (but constant for each cell, i.e. 

constant within iteration) 
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Problem 

• Underdetermined system has an infinite number of solutions; 

  

• Loss function L is most sensitive to near-surface cells, therefore, the 

traditional approach allows to select models with a contrast near-surface 

layer. Such models can be used, for example, for source-based 

continuation. However, they are not suitable for geological interpretation: 

 

 

 

 

 

 

 

 

 

Fig. 1 Example of 

inversion result 

(traditional approach) 



Proposed solution 

• Since sensitivity of loss function decreases with depth, a variable parameter 

 value can be used to solve this problem.  

 

• For example,  can be depth dependent function. Particularly,  can be  

~ zn, the power n is a hyperparameter and is selected by the interpreter 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 2 Example of 

inversion result 

(proposed approach) 



 Fig. 3 Test model # 1 

with calculated gravity 

Test model #1 

• The first test model is 2D and consists 

of two anomalous objects: an infinite 

horizontal cylinder and a vertical 

rectangular prism. 

• Length of profile is 5 km, maximum 

depth is 1 km; 

• Theoretical gravity of this model was 

used as observed field; 

• No prior data used; 

Parameter Cylinder Prism 

Excess density 

(g/cm3) 0.5 0.3 

Z top (m) 150 100 

Z bottom (m) 250 450 

X min (m) 950 4000 

X max (m) 1050 4100 

ΔVz max (mGal) 0.26 0.59 

Table 1. Test model #1 parameters 
 

 

 

 

 

 

 

 

• For 2D gravity 

modeling we used 

GravInv2D software 

(www.gravinv.ru) 



Result #1 

 

 

Fig. 4 Inversion results: a) α = const;  b) α ~ z1.5.  

Blue dots –  gravity field of test model;  

Red line – gravity field of selected model. 

 

a) 

b) 

• RMS between observed and 

calculated field < 1% in 

both cases; 

 

• Contrast near-surface layer 

at constant α; 

 

• α, increasing with depth 

allows to fit the model, that 

better shows the position of 

anomalous objects; 

 

• Both results allow to define 

horizontal position of 

objects; 

 

• Both results represent 

density underestimation. 

 

 



Test model #2 

• The second model is 3D and consists 

of three layers (two boundaries). First 

boundary has inlier, second boundary 

has fault.  

• Size of area is 10 km x 10 km, 

maximum depth is 1.5 km;  

• No prior data used; 

• For 3D gravity modeling we used 

GravInv3D software (www.gravinv.ru) 

Fig. 5 Test model #2 with calculated gravity 

 

Table 2. Test model #2 parameters 
 

 

 

 

 

 

 

 

Parameter Inlier Fault 

Excess density 

(g/cm3) 0.3 0.2 

Z top (m) 770 1000 

Z bottom (m) 800 1040 

X min (m) 5500 6000 

X max (m) 6500 6000 

Y min (m) 2000 - ∞ 

Y max (m) 4000 + ∞ 

ΔVz max (mGal) 0.10 0.29 



Result #2 

Fig. 6 Inversion results: a) α = const;  b) α ~ z1.5    

 

a) 

b) 

• RMS between observed and 

calculated field < 1% in both 

cases; 

 

• Contrast near-surface layer 

above inlier and positive 

excess densities at all depths 

above fault (α = const); 

 

• Extremum of density near 

mass center of inlier and 

maximum of density gradient 

near fault (α ~ z1.5 ); 

 

• Both results allow to define 

horizontal position of objects; 

 

• Both results represent density 

underestimation. 

 



Result #2 

Fig. 7 Inversion result (α ~ z1.5) with test model 

 

• Maximum of top density anomalous area corresponds to mass center of the 

inlier; 

 

• Area of density gradient maximum (bottom anomalous area) corresponds to 

the top of fault; 

 

 

 

 



Conclusions 

• Using of depth dependent descent step allows to include deep cells in model 
selection process; 

 

• Tests represent that models, selected with depth dependent α, have density 
extremum at points, close to mass center, if anomalous object is isolated. Also 
the approximate boundaries of the object can be highlighted; 

 

• In the case of semi-infinite objects, the proposed approach allows to estimate 
the depth of the upper edge by maximum of density gradient; 

 

• To achieve the best estimate, we propose to select several models with different 
values of α power from the interval [1; 2]; 

 

• Proposed approach allows to estimate approximate position of anomalous 
objects even without prior data; 

 

• Prior data must be used to determine the anomalous density and more precise 
boundaries. 

 

 



Thank you for your attention! 


