

Shanghai Astronomical Observatory Chinese Academy of Sciences

(EGU2020-4324)

Status on Chinese Space Geodesy Network and its Applications

Xiaoya Wang, Zhongping Zhang, Fengchun Shu, Guangli Wang, Kewei Xi

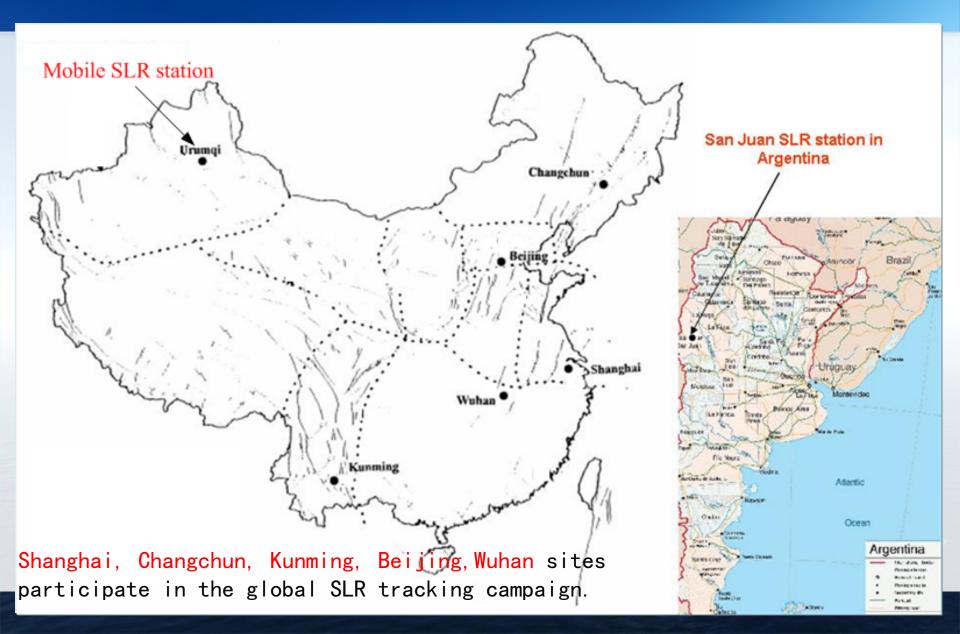
Astro-Geodynamics Research Center, Shanghai Astronomical Observatory, Chinese Academy of Sciences, 80 Road NanDan, Shanghai 200030, China; University of Chinese Academy of Sciences, Beijing 100049, China; Shanghai Key Laboratory of Space Navigation and Positioning Techniques, Shanghai Astronomical Observatory,CAS, Shanghai 200030, China Email: wxy@shao.ac.cn

GGOS session G2.1

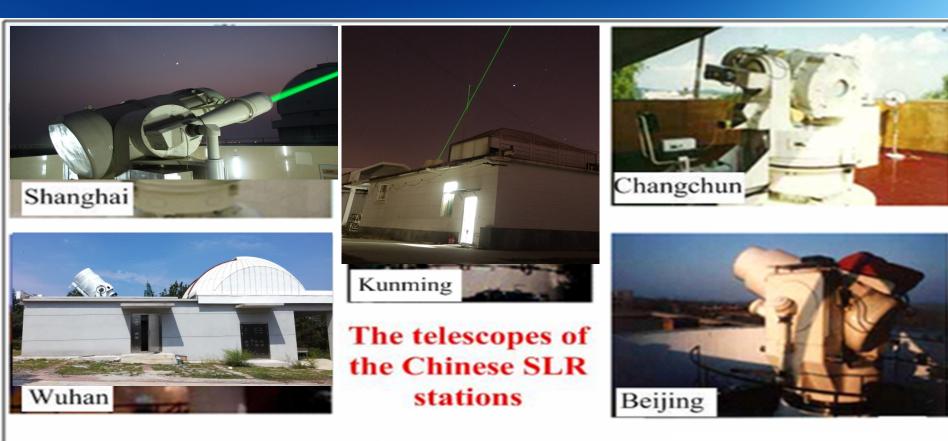
The Global Geodetic Observing System: Improving infrastructure for future science Tuesday, 5 May 2020, 08:30–10:15

1. Status of Chinese space geodetic networks

2. Data processing software update

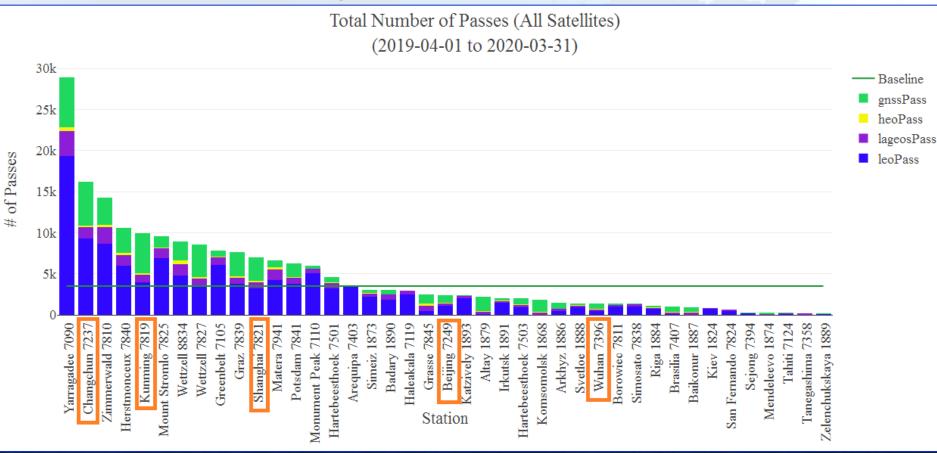

3. CERS, STRF and CERS EOP products

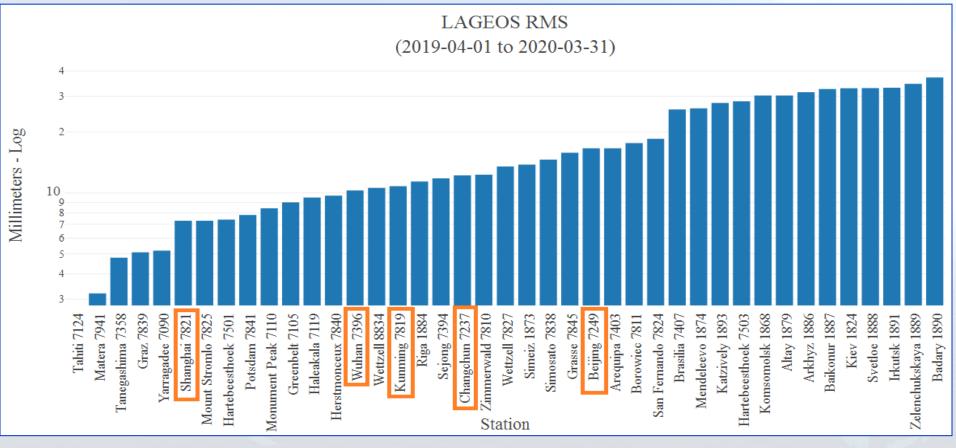
4. Conclusions and future plans


1. Status of Chinese space geodetic networks

Status of Chinese SLR network

Distribution of Chinese SLR sites


Tracking telescopes of SLR network



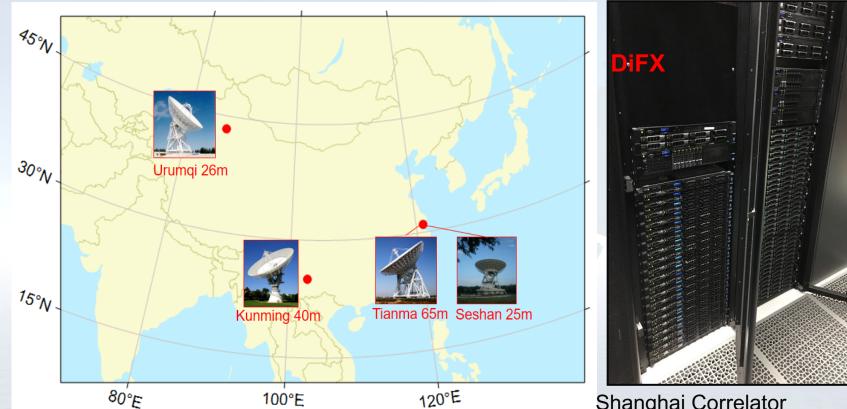
 The routine 1kHz SLR measurements in Shanghai, Changchun, Kunming, Beijing and Wuhan sites and the total passes of laser data per year of over 35k for GEO, GNSS, Lageos, LEO satellites.

• The routine 1kHz SLR measurements with the precision of less than 12mm to Lageos satellites.

The short and long term stability of laser data are less than 20mm and

 The mobile SLR system (TROS) with the aperture of 1 meter has installed in Xinjiang Observatory (Urumqi). The observations to ILRS satellites has been performed since Sep. 19 in 2019.

The mobile SLR system (TROS) in Xinjiang Observatory (Urumqi)

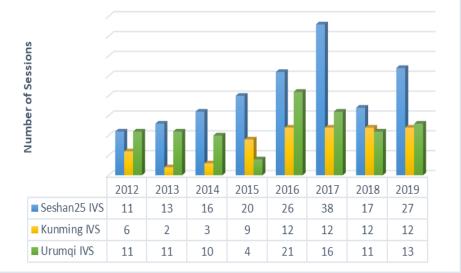

Very significant site in Chinese SLR network

- Shanghai station is developing 10kHz ~ 100kHz rep. rate SLR technology in order to improve the system stability and data quality. Due to high data density, the high rep. rate SLR data are also used to analyse the rotation rate of geodetic satellites.
- Kunming sites has realized the Lunar Laser Ranging with the distance of 380,000km.
- The system updating work in SanJuan station is underway for kHz SLR measurements as one valuable sites in the southern hemisphere.
- The updating 2kHz routine SLR measurements at night and in daylight is also being underway in Chinese network and will be finished in 2022 for geodetic observations.

1. Status of Chinese space geodetic networks

Status of Chinese VLBI network

Chinese VLBI facilities operational for the IVS


Currently 4 stations regularly participate in the IVS observing program.

Shanghai Correlator 400 CPU cores, 800TB storage, 2Gbps international fiber link

Participation of IVS observing sessions

- Seshan25 and Urumqi are IVS network stations
- Kunning and Tianma65 are cooperative stations of the IVS
- Tianma 65-m antenna supports 3~6 IVS astrometric sessions on annual basis
- Seshan25 also participates in 1-hour IVS intensive session monthly for UT1 measurement

Statistics of observed IVS sessions

Each IVS regular observing session spans 24 hours

Mixed-mode geodesy using Chinese VLBI stations

Date	Starting time	Duration	Code	Stations
20150122	9:00	24	cn1501	ShKmUrKsJs
20150122	9:00	24	cdsn02	ShUrKsJs
20150321	0:00	24	cdsn03	ShUrKsJs
20150630	17:30	24	cdsn04	ShKsJs
20150917	10:00	24	cdsn05	ShKmKsJs
20151022	2:00	24	cn1502	ShKmUrBjKsJs
20151113	3:00	24	cn1503	KmUrKsJs
20151210	8:00	24	cn1504	KmUrKsJs
20160506	6:00	24	cn1601	ShKmUrKsJs
20160702	6:00	24	cn1602	ShUrKsJsYgKe
20160928	18:00	24	apsg39	APSG+KsJs
20161130	6:00	24	cn1603	KmUrKeYgKsJs-Ur
20161229	3:00	24	cn1604	KmUrKsJs
20170325	06:00	24	cn1701	ShKmUrKsJs
20170511	06:0	24	cn1702	ShUrKs
20170523	17:30	24	cn1703	ShKmUrKsJs
20170725	17:30	24	APSG40	APSG + KsJsJlSy
20170808	17:30	24	cn1703	T6UrKsJs

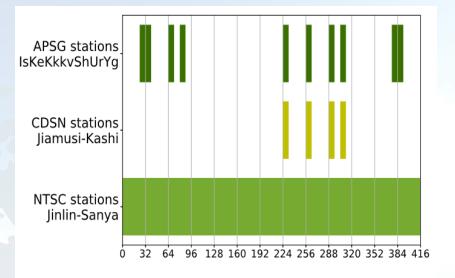
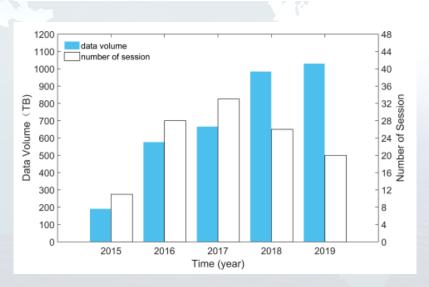


Fig. 2: X-band Frequency sequence wrt 8181MHz.

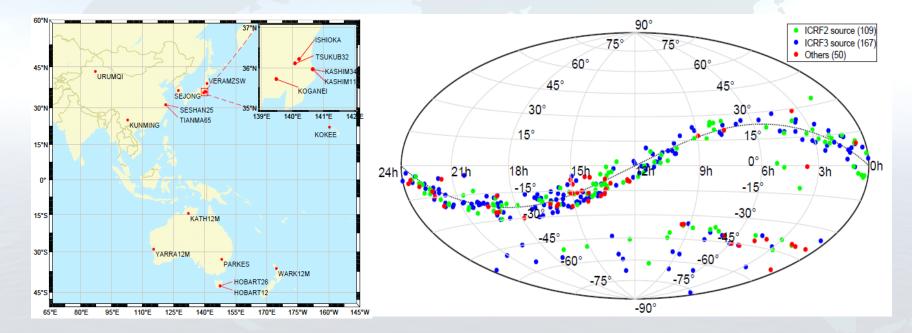
	•		-					
es	Jilin		Sanya		Jiamusi		Kashi	
adj	ustment	σ	adjustment	σ	adjustment	σ	adjustment	σ
-	49.76	8.91	-58.10	12.58	-53.59	26.56	17.23	26.70
	24.64	1.87	101.36	2.53	52.94	8.87	35.70	0.44
	24.98	1.57	-20.60	2.11	-0.73	6.05	106.65	5.93
	adj -	es	es adjustment σ -49.76 8.91 24.64 1.87	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$				


(He et al. 2019, EVGA)

Shanghai VLBI correlator

118 IVS sessions and 20 CVN sessions have been correlated from 2015 to 2019

- AOV: astrometry of weak ICRF sources
- **APSG**: regional geodesy around Asian and Pacific area
- AUST-AST: Australian astrometric sessions
- CRF/CRD: monitoring CRF sources, more focused on southern hemisphere
- RD: astrometry of Gaia transfer sources
- CVN: measurement of station positions of Chinese stations

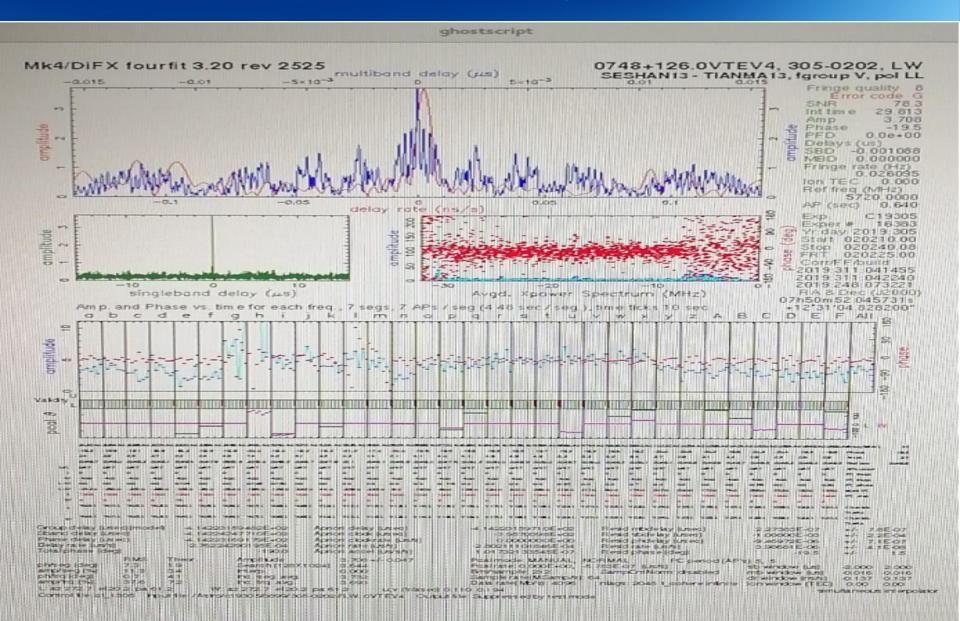

Session Name	2015	2016	2017	2018	2019
AOV	3	3	3	7	6
APSG	2	2	2	2	2
AUS-AST	0	13	14	6	0
IVS-CRF/CRD	6	9	9	6	6
IVS-RD	0	1	5	5	6
IVS Session	11	28	33	26	20
CVN Session	7	5	5	3	0

Astrometry of weak sources with AOV/APSG

AOV is unique to astrometry of weak sources in the middle southern hemisphere and the ecliptic plane

SHAO scheduled and correlated part of AOV observing sessions from 2015 onwards

Tianma VGOS stations

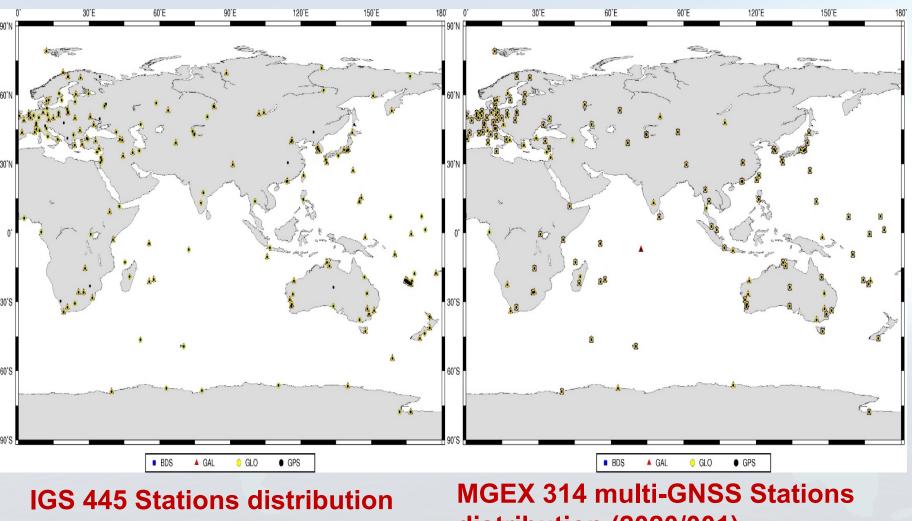

Seshan VGOS – Tianma VGOS Stations

ShVGOS

F(Ghz)	EL(°)	SEFD-H(Jy)	SEFD-V(Jy)
4	36	2167.7	2058.6
6	35	2387.9	2185.8
8	33	1842.5	1702.3
10	31	2847.2	2377.1
12	29	3103.3	2812.3
14	27	3596.3	2966.3

Seshan VGOS – Tianma VGOS fringe test on Nov. 7, 2019

1. Status of Chinese space geodetic networks


Status of Chinese GNSS network

Chinese GNSS network

Sub-net1 distribution of 103 multi-GNSS Stations(150 sites in future) Sub-net2 distribution of 260 Stations (2020/001)

Global GNSS network from IGS and MGEX used

(2020/001)

distribution (2020/001)

2. Data processing software update

GNSS data processing software update

The GNSS data processing soft ware has been updated accord ing to the reco mmended mod els by IERS con ventions(2010). Nowadays, GN SS data proces sing software h as realized mult i-GNSS precise orbit determina tion and the SL **R** orbit validatio n.

Loading effects

on stations

pressure effects

on satellites

Background models

Updated models Orbit improvetion Solid earth tide

Ocean loading

Ocean pole tide

S1-S2 Atmospheric pressure loading

Solar radiation pressure(box-wing)

Earth radiation pressure(box-wing)

post-seismic deformation (PSD)

IAU2006/2000PN

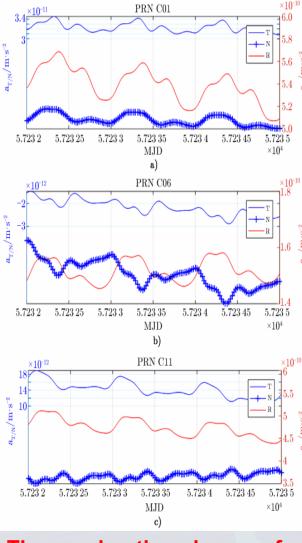
time-variable gravity filed(eigen-6s41.gfc)

DE430

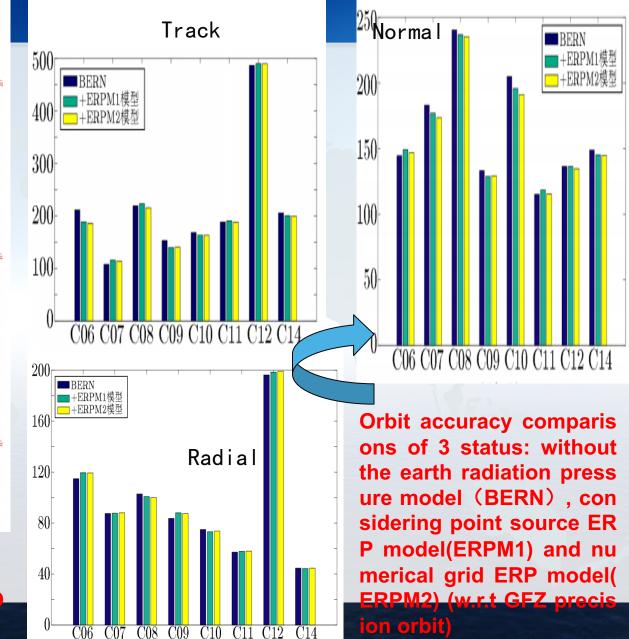
High order ionosphere terms for GNSS

> GNSS DSB (CODE/DLR/CAS)

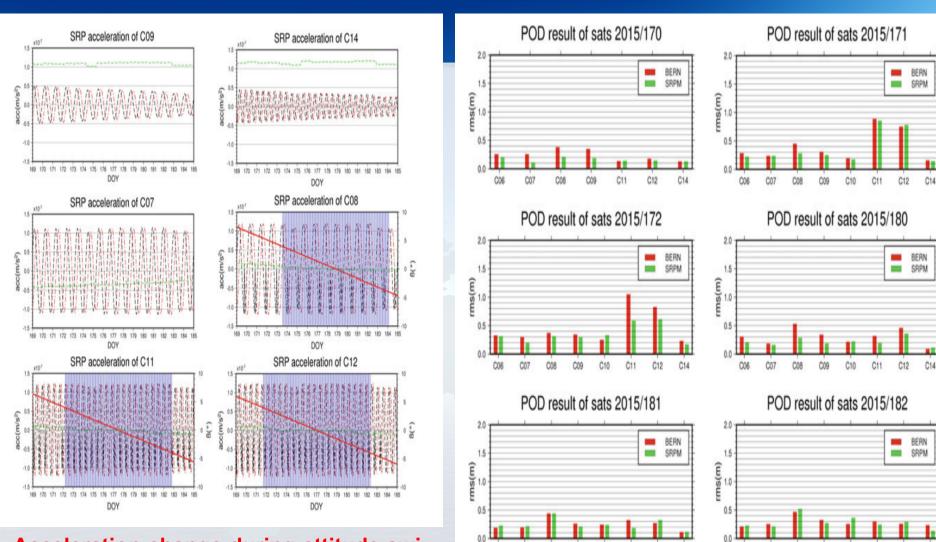
1mm-3mm


10mm-20mm

3mm-5mm


0.5mm-1mm

1mm-3mm


Earth Radiation Pressure for BDS

The acceleration change of earth radiation pressure of BDS GEO (a) / IGSO (b) / MEO (c) satellite in R / T / N.

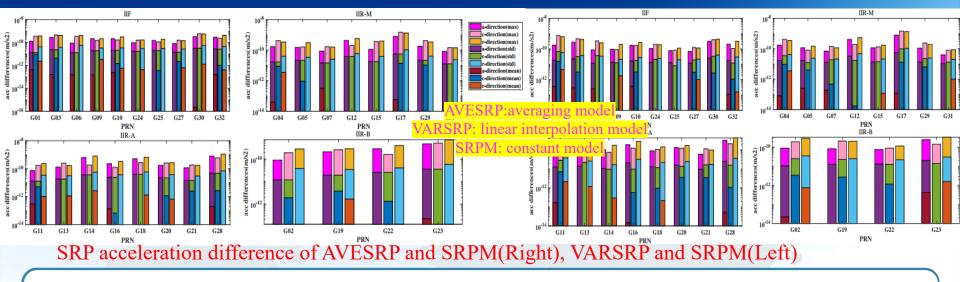
Solar Radiation Pressure model considering attitude switching

C06 C07

C08

C09

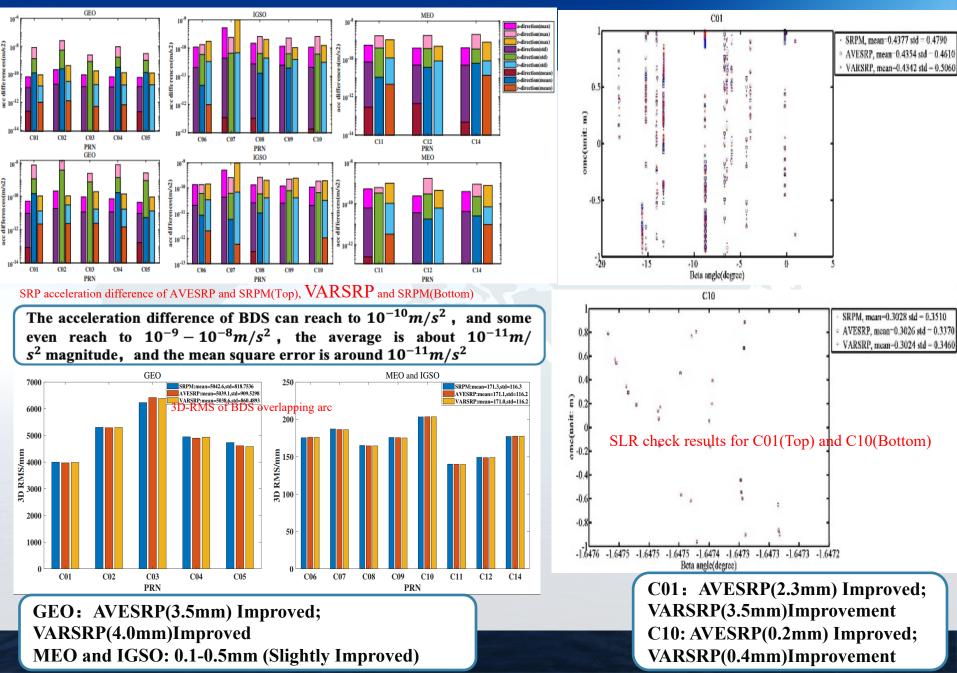
C11

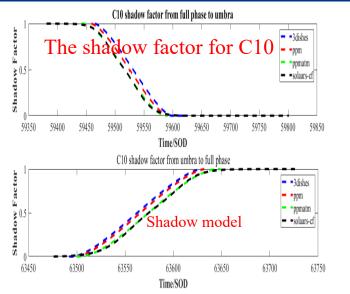

Acceleration change during attitude swi tching period (The R/T/N was plotted in black/red/green. The blue shadow is sat ellite orbit-normal and the sun elevation to drawn with red.)

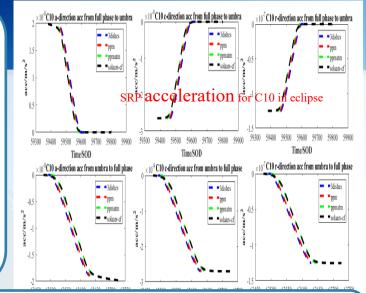
The orbit comparison between the BERN and SRPM model during attitude switching (w.r.t GFZ precision orbit) in period.

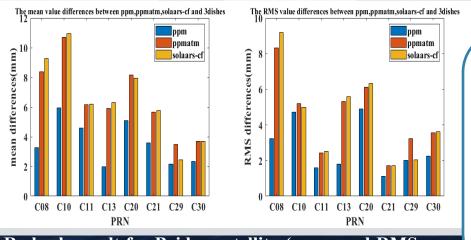

C06 C07 C08 C09

C11


SRP model with considering Solar Irradiance Change(GPS test)


The VARSRP and AVESRP models are more consistent and show common features. The acceleration difference of most GPS satellites is up to $10^{-10}m/s^2$, some even reach to $10^{-9}m/s^2$, the mean value is around $10^{-13}m/s^2$, and the mean square error is about $10^{-11}m/s^2$.


SRP model with considering Solar Irradiance Change(BDS test)


The Refinement of Shadow Model for Beidou Satellites

1. Shadow models(PPM, PPMatm, SOLAARS-CF) with earth oblateness and atmosphere effect enter shadow earlier and come out later than 3dishes 2. The SRP acceleration of PPMatm and SOLAARS-CF have significant difference with PPM and 3dishes 3. PPMatm is highly consistent with SOLAARS-CF

3dishes: conical spherical model considering earth shadow and moon shadow PPM: prospective projection model considering earth oblateness(from Li(2018)) PPMatm: linear function describing atmosphere effect based on PPM model(from Li(2018)) SOLAARS-CF: semi-empirical model considering earth oblateness and atmosphere effect(from Robertson(2015))

SLR check result for Beidou satellites(mean and RMS of three models regard to 3dishes)

Conclusion

- 1. PPMatm and SOLAARS-CF's performance is better than other two models
- 2. Mean: The maximum improvement of PPMatm and SOLAARS-CF can reach to 10mm, it is generally 2-8mm
- 3. RMS: The maximum improvement of PPMatm and SOLAARS-CF can reach to 8mm, it is generally 2-6mm
- 4. The performance of PPMatm and SOLAARS-CF is comparable

The Refinement of Shadow Model for Beidou Satellites

Eclipse

Reception

Eclipse

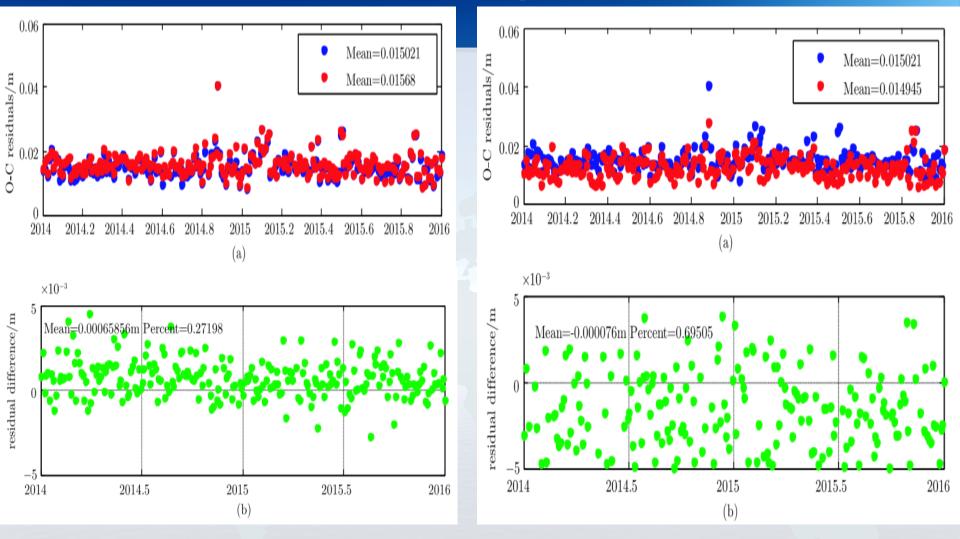
Launch

Time period

The statistics result of Inter-satellite link check

(DC	DY)		(Yes or No)		(Yes or No)
043-	-070	C19	Yes	C23	No
043-	-070	C21	Yes	C23	No
102·	-118	C27	Yes	C22	No
102 ·	-118	C30	Yes	C23	No
0.2 0 - m -0.2 - 0.6 - -0.8 -		C19-C23 Inter	Satellite Link check results	in eclipse	0.2833 ns=0.2810
-1 58525	58530	58535	58540 5	8545 58550	58555
			Time/MJD		

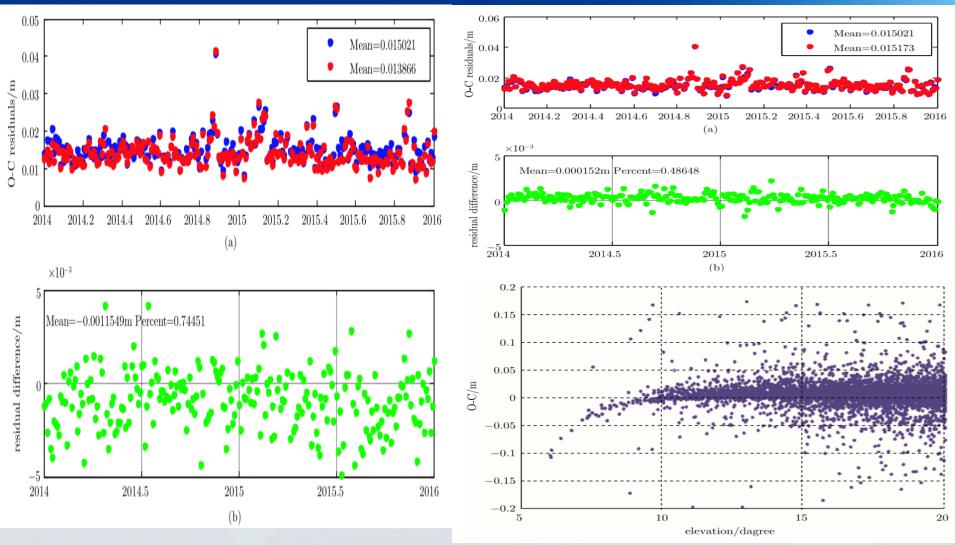
sat-li	nk	Shadow model	Mean(m)	RMS(m)	dif _{mean} (m)	dif _{RMS} (m)
C19-C2	23	3dishes	-0.2050	0.2866	0	0
		PPM	-0.1995	0.2833	0.0055	0.0033
		PPMatm	-0.1967	0.2810	0.0083	0.0056
		SOLAARS-CF	-0.1969	0.2810	0.0081	0.0056
C21-C	23	3dishes	-0.2393	0.2981	0	0
		PPM	-0.2375	0.2965	0.0018	0.0016
2		PPMatm	-0.2357	0.2946	0.0036	0.0035
		SOLAARS-CF	-0.2360	0.2947	0.0033	0.0034
C27-C	C27-C22	3dishes	-0.2412	0.3896	0	0
		PPM	-0.2358	0.3859	0.0054	0.0037
		PPMatm	-0.2331	0.3829	0.0081	0.0067
		SOLAARS-CF	-0.2329	0.3834	0.0083	0.0062
C30-C2	22	3dishes	-0.1419	0.3532	0	0
		PPM	-0.1385	0.3515	0.0034	0.0017
		PPMatm	-0.1375	0.3509	0.0044	0.0023
		SOLAARS-CF	-0.1384	0.3511	0.0035	0.0021


Conclusion

- Mean: The maximum improvement of 1. **PPMatm and SOLAARS-CF can reach to** 8mm, it is generally 2-6mm
- **RMS:** The improvement of PPMatm and 2. **SOLAARS-CF** is generally 2-6mm
- 3. The performance of PPMatm and **SOLAARS-CF** is comparable

2. Data processing software update

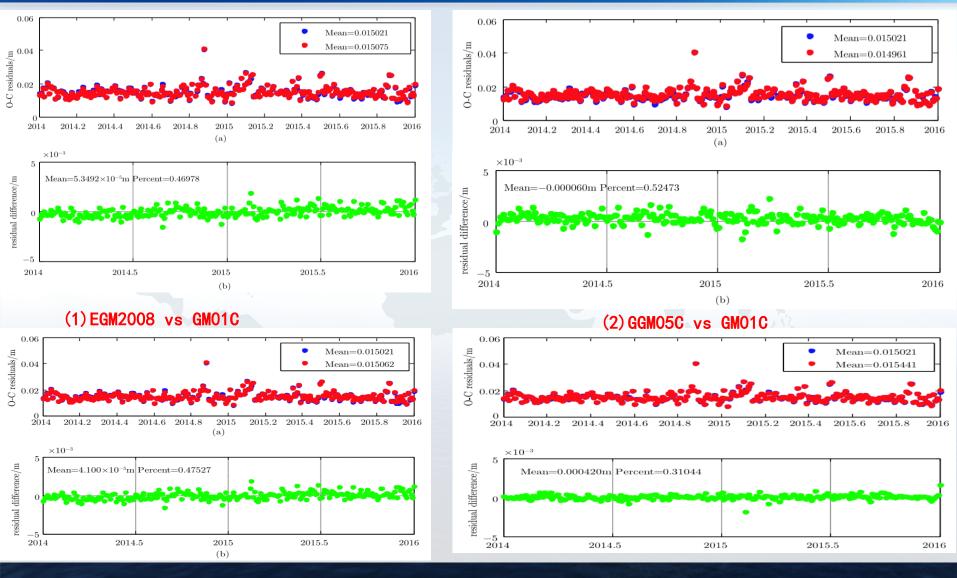
SLR data processing software update


Ocean Tide Model Update

Lageos1(left) and Lageos2(right)'s residual WRMS with CSR3.0(blue) model and FES2004(red) model, and differences between 2 models(down). FES2004 shows better.

Reference Frame Update

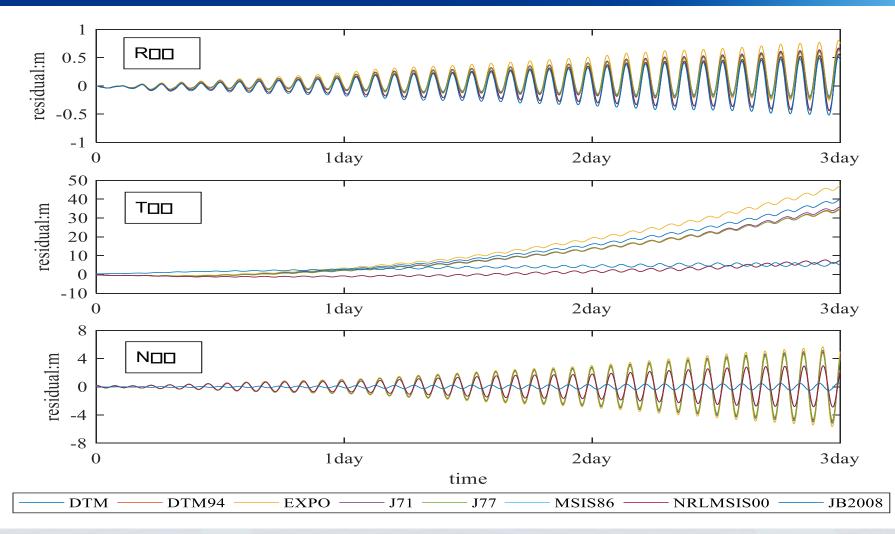
Troposphere Model Update



Lageos1's residual WRMS with SLRF2008(blue) and SLRF2014(red), and the difference between 2 models(down). SLRF2014 shows better.

Lageos1's residual WRMS with Marini-Murray model(blue) and Mendes-Pavlis(red) model, and the difference between 2 models. Mendes-Pavlis model performs better in low elevation.

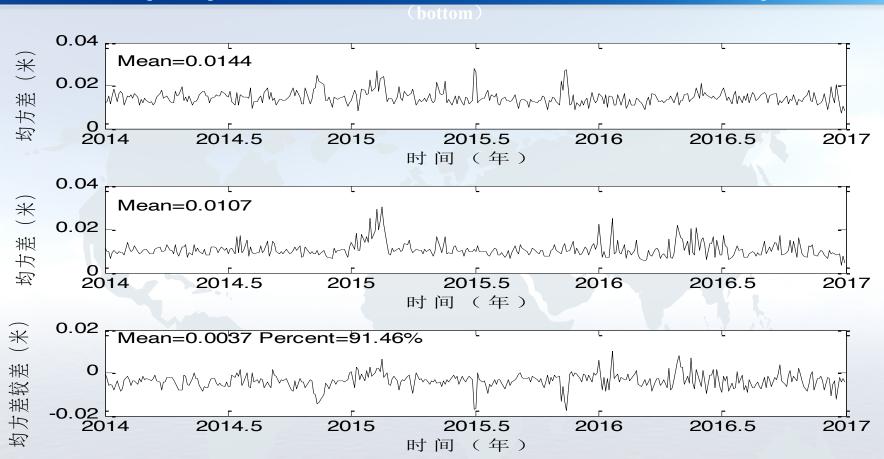
Earth Gravity Model update


Influence of Different gravity models on Lageos1 orbit(4 models:EGM2008, GGM05C, GOCO05C, G0CO05S, in blue point) with CM01C model(in red). EGM2008, GGM05C and G0C005S perform better than GM01C. GGM05C shows better.

(3) GOC005C vs GM01C

(4) GOC005S vs GM01C

Atmosphere Drag Model Update



We add 2 new drag models: NRLMSISE00 and JB2008. The RTN difference of JASON2 predicted orbit and precise orbit with 8 atmosphere drag model(exponential model, DTM, DTM94, J71, J77, JB2008, MSIS86, NRLMSIS00). NRLMSISE00/MSIS86 drag models

show better.

Weighting strategy Update

LAGEOS 1 orbit precision rms by old experience weighting strategy (up), by modified FCM weighting strategy with SLR seasonal quick report information (middle), the difference of above two and the improved arc ratio.

The observed residual rms was improved by 3.7mm on average and 91.46% of the arc segment was improved. The residual RMS of all the stations involved in the calculation was reduced.

Weighting strategy Update

SLR core sites residual RMS and NPT number with different weighting strategy

SLR site	Old experience w	eighting strategy	Modified FCM weighting strategy		
SEN SILE	NPT Number	Residual RMS(m)	NPT Number	Residual RMS	
7080	1497	0.0189	1500	0.0176	
7090	34835	0.0176	34919	0.0172	
7105	14973	0.0235	15116	0.0158	
7110	10258	0.0204	9739	0.0140	
7501	9066	0.0195	8862	0.0178	
7810	14999	0.0108	15016	0.0090	
7825	13491	0.0169	13983	0.0128	
7839	6466	0.0125	6417	0.0107	
7840	12991	0.0102	13067	0.0098	
7941	13970	0.0154	14210	0.0095	
8834	4227	0.0208	4289	0.0201	

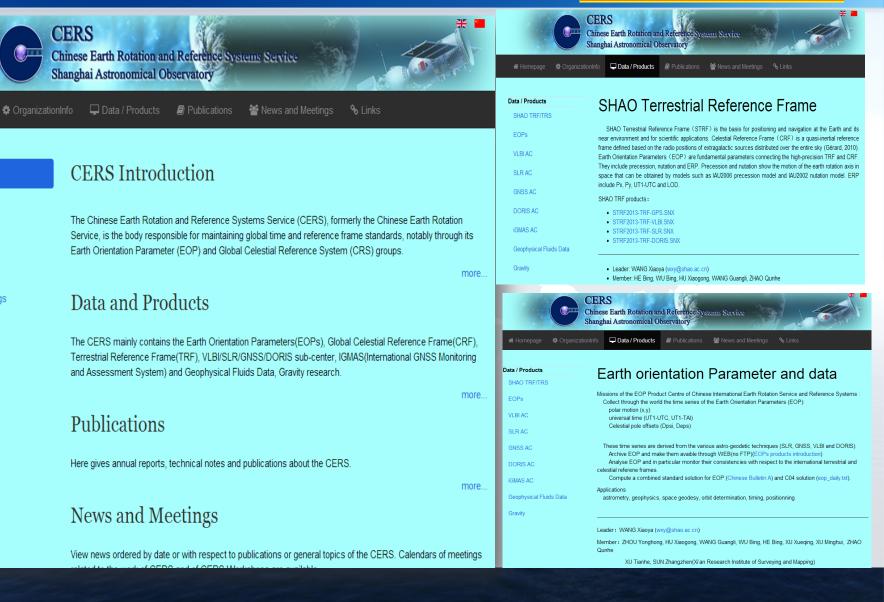
The residual RMS of all SLR sites are reduced and the NPT number is improved.

3. CERS, STRF and CERS EOP products

Homepage

Homepage

OrganizationInfo

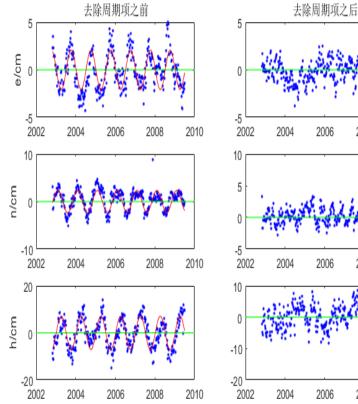

Data / Products

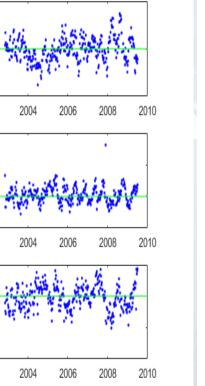
News and Meetings

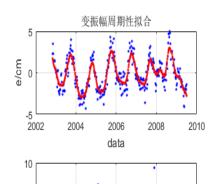
Publications

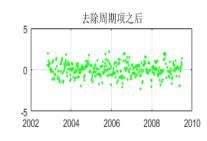
Links

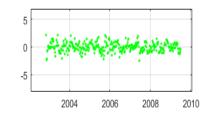
http://cers.shao.ac.cn

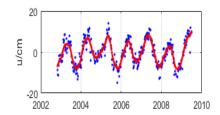


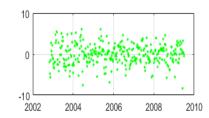

Nonline TRF establishment


 $X_{PSD}(t) = X(t_0) + \dot{X}(t - t_0) + \sum_{i=1}^{2} (a_i \cos\left(\frac{wt}{i} - \phi_i\right) + b_i \sin\left(\frac{wt}{i} - \phi_i\right)) + \delta X_{PSD}(t)$


n/cm

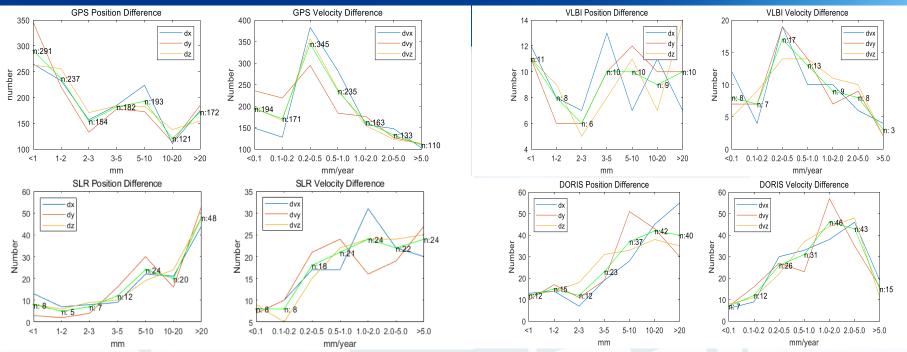

-10 -2002





2006

2004

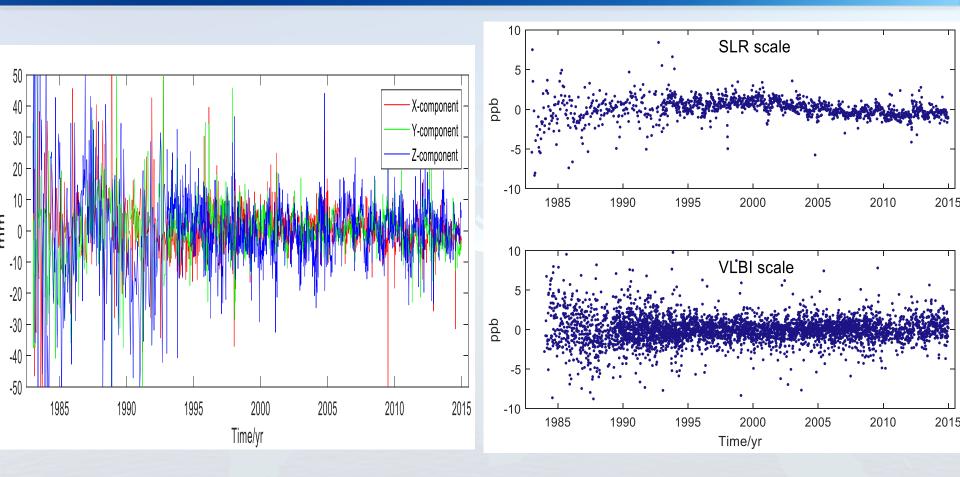

Period fitting based on least square

SSA fitting

2010

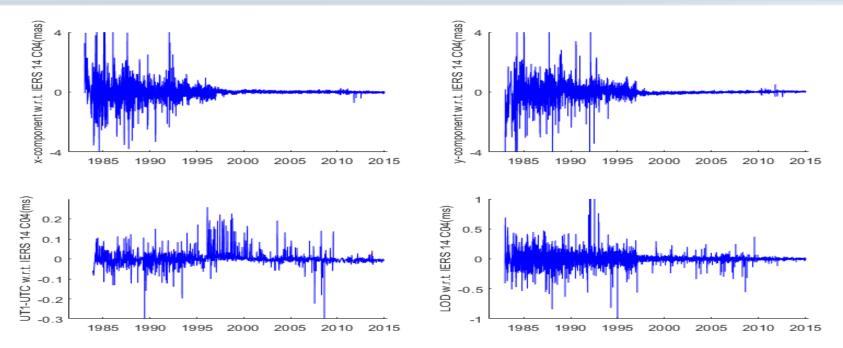
2008

STRF Products accuracy evaluation



Site number statistics with different accuracy range of STRF2014 (SHAO nonlinear Terrestrial Reference Frame) for GPS/VLBI/SLR/DORIS w.r.t ITRF2014.

Comparison result statistics of the coordinates and velocities for four techniques between SHAO nonlinear Terrestrial reference frame (STRF) and ITRF2014


Technique	Coordinate accuracy statistics (mm)		Velocity accuracy statistics (mm/yr)	
accuracy range	<1	(1,2)	<0.1	(0.1,0.2)
GNSS	21.6%	17.6%	14.4%	12.7%
VLBI	17.2%	12.5%	12.5%	10.9%
SLR	6.5%	4.0%	6.5%	6.5%
DORIS	6.6%	8.3%	3.7%	6.6%

STRF Products accuracy evaluation

Translation parameters and Scale factors of STRF2014.

CERS CO4 EOP Products accuracy evaluation

CERS CO4 EOP products comparison with IERS 14 CO4

EOD Deremetere	WRMS		
EOP Parameters	w.r.t. IERS C04		
x-component of Polar Motion (mas)	0.0564		
y-component of Polar Motion (mas)	0.0576		
UT1-UTC (ms)	0.0103		
LOD (ms)	0.0109		

4. Conclusions and future plans

- Chinese space geodetic network has contributed to global space geodesy and GGOS. They will be developed with SLR equipment modification, more GNSS sites and more VGOS sites in future.
- ② The accuracy and stability of TRF will be improved with multiple efforts from different countries. The observation model and dynamics model of each technology still need to be improved. At present, basic tests of SLR and GNSS have been completed, and VLBI and DORIS also need to be improved.
- ③ There is a space for improvement in the solution strategy. SLR has been successfully tested, and similar tests are needed for other technologies.
- ④ The results of the international combination centres for various technologies also need to be compared and tested. The third combination centre is necessary.
- (5) STRF2020 is under considered with dense Chinese GNSS network and multi-GNSS data analysis.

Acknowledgements

This work has been funded by the National Key Research and Development Program of China (2016YFB0501405), the National Natural Science Foundation of China (11973073), the Basic project of Ministry of Science and Technology of China (2015FY310200) and the Shanghai Key Laboratory of Space Navigation and Position Techniques (No.06DZ22101). We really express appreciation all

Thank you for your attention!