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Each presentation slide is followed by a text slide describing it.

This presentation introduces Bayesian ensemble fusion as tool for 
approximating probabilistic joint geophysical inversion in a way we hope will 
lead to significant time and effort savings when scaled up.

The method will be demonstrated here using airborne electromagnetic (VTEM) 
and audio-magnetotelluric (AMT) data from Cloncurry in the Mount Isa province 
of Queensland.



  

Ensemble geophysical inversion

multiple plausible resistivity models derived from a single airborne 
EM (VTEM) flight line; uses 1D forward simulation



  

Ensemble inversion is an approach where, instead of producing a single best 
estimate model of the subsurface, a large set of plausible models is created.

This is a more thorough way to deal with the inherent non-uniqueness of 
geophysical inversion.

The image shows an example where six 2D resistivity models images were 
randomly sampled.

In practice, Markov chain Monte Carlo (MCMC) methods are the dominant 
method for creating such ensembles and our work builds on this.



  

Algorithmic complexity vs. Moor’s law

1D resistivity 
ensemble

from
VTEM

2–3 hrs 
computation on 

single node

Moor’s law
transistor count on microchips double 

roughly every 2 years

Algorithmic Complexity
increased resolution leads nonlinear 
increase in computational demands



  

MCMC methods are extremely computationally expensive and for high 
dimensional model spaces can become impractical.

As a result, most existing MCMC inversion codes currently use simplified 
geometries.  The 1D resistivity model ensemble displayed in the figure is an 
example.

We wish to achieve ensemble inversion on a large scale.

Due to non-linear algorithmic complexity we do not expect that waiting for more 
powerful hardware to be developed is an option.



  

Practical probabilistic workflows?

Motivations:

Challenges:

● explore possibilities

● test hypothesis

● quantify uncertainty

● computationally expensive

● simple model geometries

● hard to interpret

● hard to implement

To get this ...

… address this.

approximations



  

Approximations allow us to trade accuracy for speed.

We introduce an approach that builds on three different approximations to 
achieve time and effort savings, both in application and development, for joint 
geophysical inversion.



  

Three approximations

1) partitioned forward modelling

2) rejection sampling

3) Bayesian ensemble fusion



  

These three approximations are listed and each will be described in the 
following slides.



  

Partitioned forward modelling

likelihood is approximated by simulating 
forward physics on separate sub-models



  

By partitioning the data and performing forward physics simulations on smaller 
sub-models, simplified geometries can be assumed which may allow much 
faster forward computation.

This approximation is already in common use, for example, laterally 
constrained inversion of AEM data computes forward physics using a series of 
adjacent resistivity 1D models.

Application of this approximation is not always safe and we need to consider 
the size and spacing of partitions carefully.



  

Rejection sampling using segmentation

identify layers

F??
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B

C

D E?



  

Rejection sampling can be used to apply in informative prior to an ensemble of 
models obtained using a less informative prior without having to repeat any 
forward calculations.

We use rejection sampling in conjunction with segmentation.

Here a set of 10000 1D resistivity models were sampled using 
transdimensional inversion from a single VTEM site.  A non-informative prior 
was used.

We now construct a more informative prior by define the suspected resistivity 
layers illustrated by the green ovals.  The order in which they may occur is also 
restricted.



  

1D models can be segmented accoding to an intepretation
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Individual 1D models can be cast into the informed parameterization using 
segmentation.



  

Samples that don’t fit 
the segmentation 

model are 
down-weigted or 

filtered out

input sample segmented sample
A

B

D



  

Models that don't fit the informed prior can be down-weighted in probability or 
filtered out.



  

Possibilities are reduced



  

Casting an uninformed ensemble into an informed prior in this way can save 
time when multiple informed prior are considered.  It requires no additional 
forward calculations

The need for using informed priors arises because there are often competing 
geological hypothesis and new ones may be elicited during the analysis.

The example shows an updated ensemble where the layers previously labelled 
'D' and 'F' have been ruled out.



  

Bayesian ensemble fusion

Input:
  sub-model ensembles
  from 3 adjacent locations

Output:
   a single combined ensemble

here each ensemble has 4 samples



  

The final approximation used is Bayesian ensemble fusion which we introduce 
to this application.

In the figure we are given three model ensemble for three adjacent locations.  
For simplicity each is depicted as having only 4 samples.

The goal is to process these in a way that outputs a single ensemble of larger 
'fused' models.



  

Prior belief rules out most combinations

combination (4,2,1)
1

4

2

Incoherent!
low probability



  

Fused models can created by simply combining samples from the three input 
ensembles according to their adjacency.

Most combinations created this way will lead to geologically incoherent fused 
models when there is significant non-uniqueness.



  

The fusion algorithm finds combinations 
consistent with prior belief

1
2

3

combination (2,3,1)

Coherent!
high probability



  

A continuity prior (i.e. regularizer) between the tree sub-models can be used to 
define coherence of fused models quantitatively.

An MCMC sampler is used to search the space of combinations to sample from 
a new objective function.

This fusion objective function is equivalent to what methods like laterally 
constrained inversion use.  With large enough input ensembles this method of 
sampling converges to what an laterally constrained inversion Bayesian 
posterior sampler would produce.



  

Create an ensemble of coherent combinations

Output:
   a single combined ensemble

Input:
  sub-model ensembles
  from 3 adjacent locations



  

There are several advantages to breaking up implementation into separate 
steps in this way,

1) the fusion program does not perform any forward calculations and can take 
ensembles as input from a variety of existing software

2) the effects of different geological hypotheses formulated as priors and 
constraints can be quickly computed without the need for repeating any 
expensive forward calculations

3) when new data becomes available it can be incorporated into the fusion 
without the need for repeating the forward calculations for existing data

4) for joint inversions, different specialists can use different ensemble inversion 
methods and software completely independently to produce the input 
ensembles



  

Fast probabilistic workflow

1)  partition data into subdivisions

2)  perform uncertainty analysis separately on each subdivision

3)  form candidate geological hypotheses

4)  apply rejection sampling

5)  fuse subdivision ensembles into a larger model ensemble

6)  evaluate and return to step 3 if needed

7)  test hypothises using less approximated methods



  

This slide shows our general purpose fast probabilistic workflow.

Step 7 is not presented here and is still under development.



  

Airborne EM (VTEM) Line + 2 Audio-
Magentotelluric Sites

exaggerated aspect ratio



  

To demonstrate, we use 50 VTEM sites along a flight line and 2 AMT sites.

The relative locations of these are shown.



  

1D rj-MCMC resistivity inversion

VTEM AMT



  

1D transdimensional inversion is first applied to each site separately using a 
non-informative prior.

This produces 50 VTEM and 2 AMT ensembles each containing 10000 1D 
resistivity models with varying numbers of layers.

The posteriors of two ensembles are summarised in the figures.  The sites 
chosen here are about 18m apart.  We can see that the AMT achieves greater 
resolution at depth than the VTEM.  This is in part due to the physics but also 
because different software packages were used by two different specialists with 
different data processing and methods and uncertainty handling approaches.



  

VTEM ensemble summary statistics

vertically exaggerated aspect ratio



  

The set of 50 VTEM ensembles can be visualised by plotting summary 
statistics, here the mean and median.

Notice that past 100m depth there is significant non-uniqueness.



  

Segmentation and rejection sampling

VTEM MT



  

Next, segmentation is applied to impose a more informed geological 
hypothesis.

Here 4 resistivity layers are assumed with their properties derived (somewhat 
informally) from the 52 ensembles themselves and existing literature on the 
region which tells us to expect at least two separate sedimentary basins (red 
and orange) overlying the crystalline basement (blue).

The same two sites as before are shown.



  

VTEM ensemble statistics after applyng 
segmentation and rejection sampling

vertically exaggerated aspect ratio



  

The posterior is refined and summary statistics for the 50 VTEM sites are 
shown.

Posterior variance is reduced as expected.



  
vertically exaggerated aspect ratio

Now with lateral constaints imposed using 
Bayesian ensemble fusion



  

Next, Bayesian ensemble fusion is applied to impose lateral continuity between 
VTEM sites.

The lateral constraint is defined here in terms of adjacent layer width changes 
and not resistivity as it varies by different degrees within different layers.



  
vertically exaggerated aspect ratio

The 2D posterior is bi-modal



  

Below 100m depth, there is still significant posterior uncertainty about 
resistivity.

To see why we can look at the individual 2D fused models.  Six randomly 
selected 2D models are displayed.

Notice that the posterior is bimodal because the VTEM data by itself cannot tell 
us if the deepest later is sedimentary of crystalline basement.



  
vertically exaggerated aspect ratio

Bayesian ensemble fusion was repeated but now 
with the two MT sites included



  

Finally, the lateral constraints on adjacent layer widths are extended to also 
conform to those of our 2 AMT sites.

The result is that one of the modes in the posterior now dominates.  We 
conclude that the crystalline basement is probably not present within the 
shallowest 300m here, which is consistent with other sources of geological 
information.t.



  

Conclusion

fast probabilistic workflows

Motivations:

Challenges:

● explore possibilities

● test hypothesis

● quantify uncertainty

● computationally expensive

● simple model geometries

● hard to interpret

● hard to implement

fuse multiple separate inversions

reduce complex distributed code

recycle forward calculations

en
ab

l e
s



  

There a several benefits to our approach,

1) different and existing software can be used by different specialists to create the input ensembles, 
which reduces the need for complex coordination and simplifies coding

2) forward calculations are performed once and then stored to be recycled in many subsequent 
fusions 

3) many inversions of the same data, or different combinations thereof, can then be performed using 
different priors, constraints and geological interpretations, at very little additional computational cost

4) when new data becomes available it can be incorporated into the fusion without the need for 
repeating the forward calculations for existing data

Because coherence between input ensemble is formulated by coupling interface depths and not 
petrophysical parameters, it should be possible to fuse ensembles produced by geophysical methods 
sensitive to different petrophysical properties.

In continuing work we are looking to incorporate ensemble estimates of interface depths derived from 
seismic data.
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