

Kinetic Scale Magnetic Structure in Geospace

S. T. Yao^{1, 2}, Q. Q. Shi¹, Z. H. Yao^{3, 4}, R. L. Guo³, M. Hamrin⁵, Q. G. Zong⁶, X. G. Wang⁷, A. W. Degeling¹, I. J. Rae⁴, C. T. Russell⁸, A. M. Tian¹, H. Zhang⁹, H. Q. Hu¹⁰, J. Liu², H. Liu⁵, and B. L. Giles¹¹

¹ Shandong Provincial Key Laboratory of Optical Astronomy and Solar-Terrestrial Environment, Institute of Space Sciences, Shandong University, Weihai, 264209, China

² State Key Laboratory of Space Weather, National Space Science Center, Chinese Academy of Sciences, Beijing 100190, China ³ Key Laboratory of Earth and Planetary Physics, Institute of Geology and Geophysics, Chinese Academy of Sciences, Beijing 100029, China ⁴ Mullard Space Science Laboratory, University College London, London, UK

⁵ Department of Physics, Umeå University, Umeå, Sweden ⁶ School of Earth and Space Sciences, Peking University, Beijing, 100871, China ⁷ Department of Physics, Harbin Institute of Technology, Harbin 150001, China ⁸ Department of Earth, Planetary and Space Sciences, University of California, Los Angeles, California, US ⁹ Physics Department and Geophysical Institute, University of Alaska Fairbanks, Fairbanks, AK, USA ¹⁰ SOA Key Laboratory for Polar Science, Polar Research Institute of China, Shanghai, China ¹¹ NASA Goddard Space Flight Center, Greenbelt, Maryland, USA Since I learned that materials can

be uploaded online, I hope to introduce more about my recent works in this field through this opportunity, so my topic expanded from the electron mirror mode to the kinetic scale or small scale magnetic structures in geospace.

- 1. Kinetic scale magnetic holes
 - 1.1. KSMHs in the magnetosheath
 - 1.2. Waves in the KSMHs
 - 1.3. Propagation and dynamic of MHs
 - 1.4. Electron scale and electrons in mirror mode
- 2. Kinetic scale magnetic peaks
 - 2.1. Kinetic scale magnetic bottle
 - 2.2. Kinetic scale flux rope

Introduction: magnetic hole

• What is magnetic hole (MH)?

A structure with observable magnetic field depression.

Widely observed in the solar wind, planetary magnetosheath and plasma sheet.

LMH (linear MH): has little or no change in the field direction.

NMH (nonlinear MH) has large angle change in the field direction.

Introduction: possible generation mechanism

• Mirror instability high β , $(T_{\perp} > T_{//})$ $(T_{\perp}/T_{//})/(1+1/\beta_{\perp}) > 1$

(Hasegawa, 1969; Southwood and Kivelson, 1993)

• Slow mode soliton

lack of observational data

[e.g. Stasiewicz, K. 2004a, 2004b]

Introduction: kinetic scale magnetic holes

Ge et al. 2011 (Themis, Plasma sheet)

1). Temperature inside: isotropy

Temperature outside: $T_{e\parallel} > T_{e\perp}$ Ion temperature: stable

- 2). Bipolar B_y
- 3). |B|~0 (strong-nonlinear)
- 4). Pressure balance
- 5). Observed between two DFs

6). L~ρ_i

possible mechanism: electrons play important role in mirror instability

Introduction: kinetic scale magnetic holes

Sun et al. 2012 (Cluster+TC1, Plasma sheet)

1). Temperature inside: $T_{e\perp} > T_{e\parallel}$

Ion temperature: stable

2). L~ ρ_i

- 3). $\delta B/B_0 \sim 30\%$ (weak-nonlinear)
- 4). $B_z > B_x$: a close relationship with the depolarization process. Results of energy release of reconnection?

Introduction: simulations

Electron vortex magnetic holes in two dimensional particle-in-cell simulations of decaying turbulence. [Haynes et al., 2015]

New MMS Observations

KSMHs, electron vortex and electron acceleration

Yao et al., 2017, JGR

Compare with theoretical 2-D EMHD soliton

We find that \tilde{b} is highly correlated with $\frac{1}{L^2}$, suggesting that the amplitude and the width of KSMHs fit well with the **2D** electron soliton (vortex) theory.

Brief summary

- 1. Magnetosheath kinetic size magnetic holes are found with electron flow vortex caused by diamagnetic drift
- At the 90° pitch angle, the 34-66 eV electron flux decreased while 109-1024 eV electron flux increased inside the MHs
- 3. Quasi-2-D EMHD soliton theory is applicable to the observations

Kinetic Size Magnetic Hole

New MMS Observations

Whistler mode, electrostatic solitary and electron cyclotron waves within KSMHs

Yao et al., 2019a, GRL

Whistler mode waves (WHs) observed in the KSMHs.

Electrostatic solitary waves (ESWs) observed in the KSMHs.

Electron cyclotron waves (ECWs) observed in the KSMHs.

Statistical analysis results of the waves.

Plasma waves are important processes in converting energy, accelerating and scattering electrons and ions. and modifying the distributions of charged particles. If plasma instabilities develop within the KSMDs, the resulting waves could absorb free energy from plasma particles and may propagate out of the KSMDs. discoveries Our could significantly advance the understanding of energy conversion and dissipation for kinetic-scale turbulence.

Could be excited by electron temperature **anisotropy or beams**.

1.3: Propagation and dynamic of magnetic holes

New MMS Observations

Contraction, expansion and propagation of magnetic holes

Yao et al., 2020a, JGR; 2016, JGR

1.3: Propagation and dynamic of magnetic holes

Example of a contracting event. Plasma velocity $|\vec{V}_{bg}|$ (blue) and along the leading and trailing normal (red, green) in spacecraft frame. One can compare $V_{L(T)}$ with $\hat{n} \cdot \vec{V}_{bg}$ to determine the propagation property.

Four different propagation properties of magnetosheath magnetic dips are identified by using Several multi-spacecraft analysis methods

40 (h)

10.5

9.5

9

260

²⁴⁰ (j)

200

180

700

600

1.5

0.5

1.2

0.8 0.6

3 2.8

2.2

P_b + P_t

 $P_{d}(T) + P$

13:57:15

₆₅₀ (k)

(I)

(m)

2.6 2.6 2.4

10 (i)

2015-11-10 UTC

Pressure imbalance plays an important role in the evolution (contracting and expanding)

Two propagation events. A sunward propagating magnetic dip (2) indicates that the structure source is closely associated with the magnetopause

New MMS Observations

Electron scale and electrons in mirror mode

Yao et al., 2018b, JGR; 2019b, APJL

1.41: Electron scale mirror mode

Kinetic scale magnetic hole **trains** (MHTs) are observed near the Earth foreshock and its downstream turbulence during the Corotating Interaction Regions (CIRs)

1.41: Electron scale mirror mode

They are electron scale mirror mode! **EVIDENCE**:

1. train-like (a-b); 2. compressible (f); 3. satisfy theoretical excitation (g); 4. satisfytrapped conditions (i-k); 5. non-propagation (n);28

1.42: Electrons in MHD scale mirror mode

Electron pitch angle distributions of magnetosheath mirror modes are observed by MMS

The PADs display a characteristic donut-like configuration

Betatron cooling and spatial dependence of electron pitch angle are able to produce

such a distribution

When I was doing this slide, I felt very hungry. However, since it was late at night and the shops outside were closed due to the developing coronavirus outbreak, I could not go outside to buy something to eat.

I am very glad to hear that the all of you are well. Wishing everyone and their families continued health and safety!

2: Kinetic Scale Magnetic Peaks

2. Kinetic Scale Magnetic Peaks

Introduction: magnetic peaks in the magnetosheath

Flux rope

2. Kinetic Scale Magnetic Peaks

Full of magnetic islands with the size of tens of ion inertial length.

Karimabadi et al., 2014

Recent MMS observations

In recent MMS studies, ion-scale FRs were observed during the reconnection at the magnetopause [Eastwood et al., 2016]. Nonideal ion behavior and filamentary currents were exhibited.

Huang et al. [2016] identified this kind of ion-scale structure in the turbulent magnetosheath as a magnetic island. Intense wave activities and electron beams were found near the structure.

Akhavan-Tafti et al. [2018, 2019] investigated 55 flux ropes observed at the magnetopause, and found that their average scale was ~1700 km (~30 times of local ion inertial length.

2.1: Kinetic Scale Flux Rope

New MMS Observations

KSFR intercept magnetosheath electrons to the magnetosphere

Yao et al., 2020b, APJ

2.1: Kinetic Scale Flux Rope

Sketch of the flux rope

A simplified equation derived from Biot-Savart law: $B = \mu_0 J \pi r^2 / 2 \pi r$ is used to estimate the twist of the magnetic field generated by the field-aligned current J ~200 nA/m⁻², where r ~42.5 km is the radius of the KFR. The calculated magnetic field is ~5.3 nT, which fits well with the magnetic component in the L-direction. This implies that the KFR is possibly generated by the field-aligned current.

2.1: Kinetic Scale Flux Rope

90°↑? Where are - they come from?

Temperature of magnetosheath electrons

Magnetosheath electrons may encounter their mirror point when traveling from the magnetosheath toward the ionosphere, and be reflected.

This KFR is **different** from previous flux ropes that transfer electron flux to the magnetosphere, but could **intercept** magnetosheath large pitch angle electron flux to the magnetosphere.

2.2: Kinetic Scale Magnetic Bottle

New MMS Observations

Kinetic scale (7 p_e) magnetic peak with electron vortex

Yao et al., 2018a, GRL

2.2: Kinetic Scale Magnetic Bottle

2.2: Kinetic Scale Magnetic Bottle

40

3. Summary & Discussions

• 1st type: kinetic scale magnetic holes

- 1.1. In the magnetosheath
- 1.2. Relation with waves
- 1.3. Propagation and dynamic
- 1.4. Electron scale and electrons in mirror mode

• 2nd type: kinetic scale magnetic peaks

- 2.1. Flux rope
- 2.2. Magnetic bottle

3. Discussions and Questions

- 1. Relationship of sheath MHs and bottles with turbulence?
- 2. Kinetic scale flux ropes: always related to magnetic reconnection?
- 3. Energy transportation and electron acceleration in MHs?
- 4. Difference between train and isolated MHs, mirror mode or soliton?
- 5. Geometry and distributions in space?
- 6. Generation mechanism, the relation with CIR and CME?
- 7. MHs near dipolorization fronts: energy release in the tail through magnetic reconnection?
- 8. ..

A lot of work to be done, and I look forward to work with you!!

Self-introduction

Hi, I am Shutao Yao (first from the right). I am very glad to share works with you. We sadly cannot meet at EGU in person, so I would like to introduce myself here.
I am a 3-year PhD student from Shandong University in China, and now looking for postdoctoral position. My supervisor is <u>Quanqi Shi</u>, and you can easily find him in this session.

My PhD research studies the physics in kinetic scale. I found some new types of kinetic scale structures in space; investigated the properties of waves, propagations, current systems, dynamics, particle distributions and acceleration, electromagnetic and plasmas features. During my doctoral study, I went to Zhongshan Station in Antarctica for a year's space physics observation. During this period, I did observation works of geomagnetic field, ionosphere, aurora, SuperDRAN radar and cosmic rays. I would very like to share some Antarctic aurora photograph with you **at the end of this report**.

Publication

- 1. Yao, S. T., et al. (2016), Propagation of small size magnetic holes in the magnetospheric plasma sheet, J. Geophys. Res. Space Physics, 121, 5510–5519, https://doi.org/10.1002/2016JA022741.
- Yao, S. T., Wang, X. G., Shi, Q. Q., Pitkänen, T., Hamrin, M., Yao, Z. H., ... Liu, J. (2017). Observations of kinetic-size magnetic holes in the magnetosheath. Journal of Geophysical Research: Space Physics, 122, 1999–2000. <u>https://doi.org/10.1002/2016JA023858</u>
- Yao, S. T., Shi, Q. Q., Guo, R. L., Yao, Z. H., Tian, A. M., Degeling, A. W., ... Liu, H. (2018a). Magnetospheric Multiscale observations of electron scale magnetic peak. Geophysical Research Letters, 45, 527–537. https://doi.org/10.1002/2017GL075711
- 4. Yao, S. T., Shi, Q. Q., Liu, J., Yao, Z. H., Guo, R. L., Ahmadi, N., et al. (2018b). Electron dynamics in magnetosheath mirror-mode structures. Journal of Geophysical Research: Space Physics, 123, 5561–5570. https://doi.org/10.1029/2018JA025607
- Yao, S. T., Shi, Q. Q., Yao, Z. H., Li, J. X., Yue, C., Tao, X., et al. (2019a). Waves in kinetic-scale magnetic dips: MMS observations in the magnetosheath. Geophysical Research Letters, 46, 523–533. https://doi.org/10.1029/2018GL080696
- 6. Yao, S. T., et al 2019b, Electron Mirror-mode Structure: Magnetospheric Multiscale Observations, ApJL 881 L31, https://doi.org/10.3847/2041-8213/ab3398.
- Yao, S. T., Hamrin, M., Shi, Q. Q., Yao, Z. H., Degeling, A. W., Zong, Q.-G., et al (2020a). Propagating and dynamic properties of magnetic dips in the dayside magnetosheath: MMS observations. Journal of Geophysical Research: Space Physics, 124. <u>https://doi.org/10.1029/2019JA026736</u>
- 8. Yao, S. T., et al. (2020b), Kinetic scale flux rope in the magnetosheath boundary layer, the Astrophysical Journal, under review.
- 9. Wang, M., Yao, S., Shi, Q. et al. Sci. China Technol. Sci. (2019). https://doi.org/10.1007/s11431-018-9450-3
- 10. Wang, S., Wang, R., Yao, S. T., Lu, Q., Russell, C. T., & Wang, S. (2019). Anisotropic electron distributions and whistler waves in a series of the flux transfer events at the magnetopause. Journal of Geophysical Research: Space Physics, 124, 1753–1769. https://doi.org/10.1029/2018JA026417
- 11. Tian A M, Shi Q Q, Degeling A W, Bai S C, Yao S T and Zhang S (2018). Analytical model test of methods to find the geometry and velocity of magnetic structures. Sci China Tech Sci, 2018, https://doi.org/10.1007/s11431-018-9350-1
- 12. Liu, H., Zong, Q.-G., Zhang, H., Xiao, C. J., Shi, Q.Q., Yao, S. T., He, J. S., Zhou, X.-Z., Pollock, C., Sun, W. J., Le, G., Burch, J. L. and Rankin, R. MMS observations of electron scale magnetic cavity embedded in proton scale magnetic cavity. Nat. Commun. 10, 1040 (2019)
- 13. Li, Z.-Y., W.-J. Sun, X.-G. Wang, Q.-Q. Shi, C.-J. Xiao, Z.-Y. Pu, X.-F. Ji, S.-T. Yao, and S.-Y. Fu (2016), An EMHD soliton model for small-scale magnetic holes in magnetospheric plasmas, J. Geophys. Res. Space Physics, 121, doi:10.1002/2016JA022424.
- 14. Sun, W. J., Slavin, J. A., Tian, A. M., Bai, S. C., Poh, G. K., Akhavan-Tafti, M., Lu, S, Yao, S. T., Le, G., Nakamura, R., Giles, B. L., and Burch, J. L. (2019). MMS study of the structure of ion-scale flux ropes in the Earth's cross-tail current sheet. Geophysical Research Letters, 46, 6168–6177. https://doi.org/10.1029/2019GL083301
- 15. Q.Q. Shi, A.M. Tian, S.C. Bai, H. Hasegawa, A.W. Degeling, Z.Y. Pu, M. Dunlop, R.L. Guo, S.T. Yao, Q.-G. Zong, Y. Wei, X.-Z. Zhou, S.Y. Fu, Z.Q. Liu, Space Sci Rev (2019) 215: 35. https://doi.org/10.1007/s11214-019-0601-2.
- T. Xiao, H. Zhang, Q. Q. Shi, Q.-G. Zong, S. Y. Fu, A. M. Tian, W. J. Sun, S. Wang, G. K. Parks, S. T. Yao, H. Rème, and I. Dandouras. (2015), Propagation characteristics of young hot flow anomalies near the bow shock: Cluster observations, J. Geophys. Res. Space Physics, 120, 4142–4154, doi:10.1002/2015JA021013.
- 17. H. Y. Zhao, X. C. Shen, B. B. Tang, A. M. Tian, Q. Q. Shi, J. M. Weygand, Z. H. Yao, Q.-G. Zong, S. Y. Fu, S. T. Yao, T. Xiao, and Z. Y. Pu. (2016), Magnetospheric vortices and their global effect after a solar wind dynamic pressure decrease, J. Geophys. Res. Space Physics, 121, 1071–1077, doi:10.1002/2015JA021646.
- Z. H. Yao, A. N. Fazakerley, A. Varsani, I. J. Rae, C. J. Owen, D. Pokhotelov, C. Forsyth, R. L. Guo, S. C. Bai, S. T. Yao, and N. Doss. (2016), Substructures within a dipolarization front revealed by high-temporal resolution Cluster observations, J. Geophys. Res. Space Physics, 121, doi:10.1002/2015JA022238.
- Shi, Quanqi & Shen, Xiaochen & Tian, Anmin & Degeling, Alexander & Zong, Q.-G & Fu, Suiyan & Pu, Zuyin & Zhao, H. & Zhang, Hui & Yao, S.. (2020). Magnetosphere Response to Solar Wind Dynamic Pressure Change: Vortices, ULF Waves, and Aurorae. 10.1002/9781119509592.ch5.

THANKS

All the photos were taken by me. If you like one, some or all of them, please contact me and leave your address. I will send you a postcard. Of course, if we meet later in some meeting, I can send it to you directly!

yaoshutao2008@163.com