

Chemical composition and volatility distribution of SOA formed by ozonolysis of β-caryophyllene between 213-313 K

Linyu Gao (linyu.gao@kit.edu),

Magdalena Vallon, Junwei Song, Wei Huang, Thomas Leisner, and Harald Saathoff

Institute of Meteorology and Climate Research - Karlsruhe Institute of Technology

Introduction

- β-Caryophyllene is the most common and abundant of the sesquiterpenes emitted into the atmosphere and more reactive and larger in size than monoterpenes. (Duhl et al., 2008).
- Their aerosol mass yields are large and result in a significant contribution to the SOA budget in the atmosphere (Tasoglou and Pandis, 2015).
- Therefore, we studied the composition of both gas and particle phases as well as phase partitioning of SOA from ozonolysis of β-caryophyllene in presence and absence of NOx at five temperatures (213 K, 243 K, 273 K, 298 K and 313 K) in the AIDA aerosol simulation chamber (Wagner R et al., 2006).
- This work focusses on the characterization and volatility analysis of the SOA by mass spectrometry employing a FIGAERO-HR-TOF-CIMS (Lopez-Hilfiker et al., 2013) operated with iodide ions as well as a HR-TOF-AMS (Canagaratna M et al., 2007).

Experiment

FIGAERO-TOF-CIMS

T [K]	RH [%]		
313	13		
298	28		
273	67		
243	88		
213	96		

β-Caryophyllene was oxidized by an excess of 317 ppb ozone in presence of 37 ppb of NO₂

Main components are C₁₅H₂₄O₃₋₆, C₁₄H₂₂O₃₋₆, C₁₄H₂₄O₅₋₆, C₁₅H₂₅O₇₋₈N.
 Nitrogen containing species are marked in red.

4 03.05.2020

- With decreasing temperature the SOA contains more heavier masses at m/Q(400-540, dimers) and less at m/Q(200-400, monomers) as well as m/Q(540-700, trimers).
- More compounds in C_xH_yO_zN_j(j≥1) are formed at higher temperatures. Their mass peaks are strongest at 298 K.

- The maximum of desorption temperatures (T_{max}) of sum C_xH_yO_z and sum C_xH_yO_zN_j compounds show similar trends with temperature, going down from 213 K to 273 K, and then going up from 298 K to 313 K.
- Bimodal structures could be explained by two volatile groups (e.g. m/Q 200-400 and 600-700 at 273 K) for each filter. The fragmentation of heavier compounds during the heating procedure could also contribute to the first peak.
- At 213 K, the single but wide peak may be influenced significantly by the compounds at m/Q of 488.3 (excluding I⁻) and 489.3 (excluding I⁻), as these two compounds contribute most to C_xH_yO_z group and C_xH_yO_zN_j group, respectively.

- The T_{max} goes down from experiments at 213 K to 273 K, and then goes up from 298 K to 313 K. The T_{max} keeps the lowest in experiments at 273 K. The mass peaks are more concentrated in the experiment at 273 K.
- At low temperatures, the product spectrum is smaller, which means these compounds have larger individual contributions to total mass.

Calculation of the saturation concentration C_{sat}*

 $IgC_{sat}^{*}(298K) = (n_{c0} - n_{c}) \cdot b_{c} - n_{o} \cdot b_{o} - 2 \cdot ((n_{c} \cdot n_{o})/(n_{c} + n_{o})) \cdot b_{co} - n_{N} \cdot b_{N}; \text{ (Li et al., 2016)}$

where n_{c0} is the reference carbon number; n_{C} , – n_{O} and n_{N} denote the numbers of carbon, – oxygen and nitrogen atoms, respectively; b_{C} , b_{O} and b_{N} denote the contribution of each atom to lgC_{sat}^{*} , respectively, and b_{CO} is the carbon– oxygen nonideality.

Classes	$n_{\rm C}^0$	b _C	$b_{\rm O}$	$b_{\rm CO}$	$b_{ m N}$	$b_{\rm S}$
СН	23.80	0.4861				
CHO	22.66	0.4481	1.656	-0.7790		
CHN	24.59	0.4066			0.9619	
CHON	24.13	0.3667	0.7732	-0.07790	1.114	
CHOS	24.06	0.3637	1.327	-0.3988		0.7579
CHONS	28.50	0.3848	1.011	0.2921	1.053	1.316

 ΔH_{vap} =(-5.7·lg C_{sat} *(298K)+129) ·1000; Where ΔH_{vap} is the enthalpy of vaporization, kJ/mol;

Clausius – Clapeyron equation:

 $IgC_{sat}^{*}(T) = IgC_{sat} \cdot (298K) + (\Delta H_{vap}/(R \cdot In10)) \cdot ((1/298) - (1/T));$

- Particles formed at higher temperatures contain more volatile compounds.
- Nitrogen containing compounds C_xH_yO_zN_j contribute mainly to LVOC and SVOC for particles formed at higher temperatures, while to ELVOC for lower temperatures.

Conclusion

- Particle phase analysis shows three groups of compound masses with m/z 200-400, (C₅₋₁₆), (m/z 400-540, (C₂₀₋₃₄), and m/z 540-700, (C₃₅₋₄₀) classified as monomers, dimers, and trimers, respectively.
- Trimeric compounds were observed preferentially in SOA formed at higher temperatures (273 K, 298 K, 313 K), while only monomeric and dimeric compounds were detected at lower temperatures (243 K and 213 K). Interestingly, dimeric compounds, including C_xH_yO_z and C_xH_yO_zN_i, contribute more to SOA mass for the lower temperatures.
- Comparing volatility distributions for the five different temperatures and thermal desorption information from FIGAERO-CIMS (298-473 K), more compounds with lower volatilities are found for lower SOA formation temperatures.
- Nitrogen containing compounds C_xH_yO_zN_j contribute mainly to LVOC and SVOC for particles formed at higher temperatures, while to ELVOC for lower temperatures.

Reference

T.R. Duhl, D. Helmig, A. Guenther, Sesquiterpene emissions from vegetation: a review, Biogeosciences, 5 (2008), pp. 761-777

A. Tasoglou, S.N. Pandis, Formation and chemical aging of secondary organic aerosol during the β -caryophyllene oxidation, Atmos. Chem. Phys., 15 (2015), pp. 6035-6046

Wagner, R., Bunz, H., Linke, C., et al. Chamber simulations of cloud chemistry: the AIDA Chamber. In *Environmental simulation chambers: application to atmospheric chemical processes*, pp. 67-82. Springer, Dordrecht.

Lopez-Hilfiker, F. D., Mohr, C., A novel method for on-line analysis of gas and particle composition: description and evaluation of a Filter Inlet for Gases and AEROsols (FIGAERO). Atmos. Meas. Tech. Discuss, 6.5 (2013).

Canagaratna M R, Jayne J T, Jimenez J L, et al. Chemical and microphysical characterization of ambient aerosols with the aerodyne aerosol mass spectrometer. Mass spectrometry reviews, 26.2 (2007), pp. 185-222.

Y. Li, U. Pöschl, and M. Shiraiwa, Molecular corridors and parameterizations of volatility in the chemical evolution of organic aerosols, Atmos. Chem. Phys., 16.5 (2016), pp. 3327-3344

Acknowledgements

Technical support by KIT-IMK-AAF staff and financial support by the China Scholarship Council.

Thank you !

12 03.05.2020

Institut of Meteorology and Climate Resarch