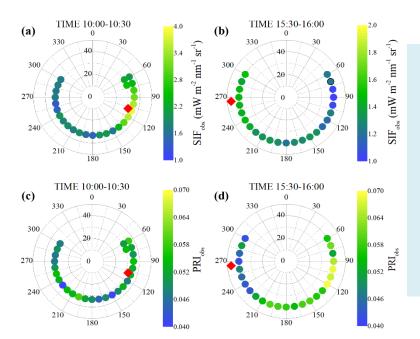
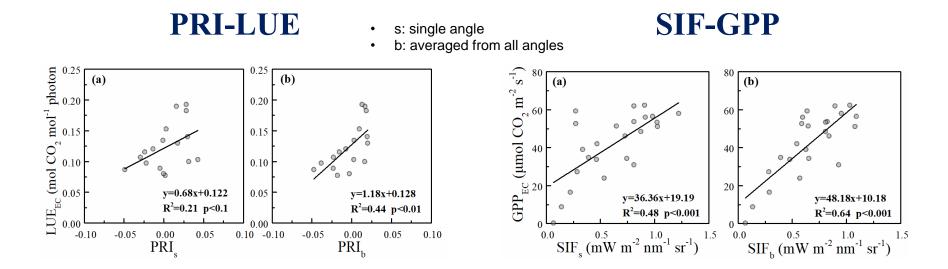


Comparison of the Photochemical Reflectance Index and Solar-induced Fluorescence for Estimating Gross Primary Productivity


 Qian Zhang, International Institute for Earth System Science, Nanjing University, China

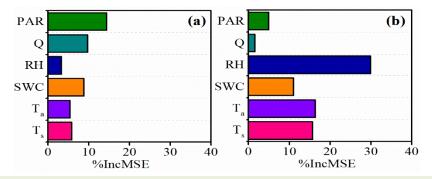
Email: zhangqianzh@nju.edu.cn


 Jinghua Chen, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, China Email: chenjh.14b@igsnrr.ac.cn

Introduction

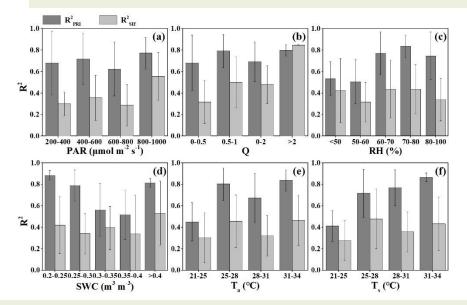
- Photochemical reflectance index (PRI) as a proxy for light use efficiency (LUE) has the potential to improve the estimates of vegetation gross primary productivity (GPP) using LUE model.
- Solar-induced fluorescence (SIF) has increasingly been shown to be a promising approach for directly estimating GPP.
- Anumber of factors including the view-geometry and environmental variables, which may disassociate PRI and SIF products from photosynthesis
- Multi-angle SIF and PRI observations were conducted in a maize field during the 2018 growing season

- SIF and PRI obtained at different view angles at different time on DOY 213 shown in a polar coordinate system (overhead view). The red diamond represents the average solar position within the 30 min.
- The observed SIF and PRI varied greatly with viewing azimuth angles and the angular pattern changed diurnally with the solar position


PRI-based and SIF-based models for GPP estimation

Explanatory terms for GPP	$LUE_{PRI}^{*} \times APAR: GPP_{EC}$			SIF _{can} : GPP _{EC}		
regression model	R ²	р	RMSE	R ²	р	RMSE
Daily mean ^a	0.44	< 0.001	12.25	0.50	<0.001	11.75
30 min ^b	0.47	< 0.001	15.28	0.45	<0.001	16.12
Day-by-Day ^c	0.71 ± 0.22	0.00 ± 0.01	4.59±3.08	0.38±0.23	0.08±0.19	8.90±5.51

Table Summary statistics for thePRI-based LUE model and theSIF-based linear model for GPPestimation at different time scales.


The seasonal GPP dynamics were better captured by the SIF-based linear model (R2=0.50) than the PRI-based LUE model (R2=0.45), while the PRI-based LUE model performed better in estimating the diurnal variations of GPP (R2=0.71).

Effects of environmental variables

Relative contributions of the predictor variables in the random forest model for explaining (a) R^2_{SIFb} , the correlation between SIF_b and GPP_{EC}, (b) R^2_{PRIb} , the correlation between LUE_b×APAR and GPP_{EC}

PAR and RH were of the most importance in the estimation of diurnal GPP variations using the SIF-based and the PRI-based models, respectively.

The PRI-based LUE model performed better than the SIF-based model under most environmental conditions, while SIF should be a preference under clear days (Q>2).

Distribution of R^2_{PRI} and R^2_{SIF} under the classified PAR, Q, RH, SWC, T_a , and T_s . Error bars represent standard deviations of R^2 under the classified ranges of the environmental variations.

Conclusion:

This study confirmed the importance of multi-angle observation of SIF and PRI in estimating GPP and LUE, and suggested that the environmental effects should be considered for accurately estimating GPP using SIF and PRI.