A Deep Learning Method for Short-Range Point Forecasts of Wind Speed

P. Papazek, I. Schicker – EGU 2020

OBJECTIVE

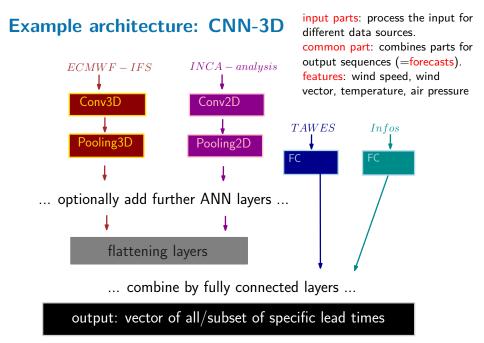
short-range point forecasts for wind speed related applications.

REQUIREMENT

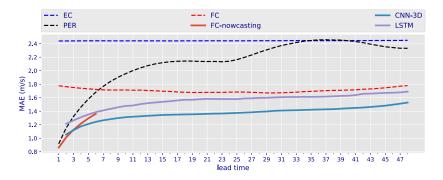

computational **efficiency** and forecast **accuracy** based on **gridded input** data.

Available data sources:

ECMWF IFS NWP, 9x9 km INCA analysis gridded OBS, 1x1 km

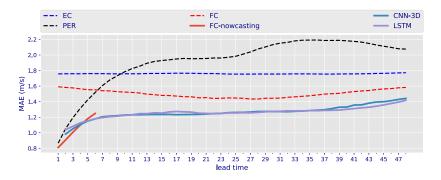

TAWES OBS of stations

Case study of 12 Selected TAWES/observation sites



Test periodTraining periodAltitude1 year:20193 years:2016 - 20183109 - 198 m

 \rightarrow investigate deep learning ANN models



Mean absolute error (MAE): 2019, all 12 sites

LSTM	long short-term memory model of ECMWF input, INCA analysis as CNN, observation as FC layer
CNN-3D	convolutional 3D $+$ pooling layer for ECMWF, INCA analysis as CNN, observation as FC layer
FC	fully connected ("feed-forward") model using all inputs flattened
FC-nowcasting	fully connected model based on observations optimized for up to $+6$ hours
EC	ECWMF-IFS closest grid point
PER	persistence model (current wind speed assumed for $+48$ hours)

Mean absolute error (MAE): 2019, Wien Hohe Warte

LSTM	long short-term memory model of ECMWF input, INCA analysis as CNN, observation as FC layer
CNN-3D	convolutional $3D + pooling$ layer for ECMWF, INCA analysis as CNN, observation as FC layer
FC	fully connected ("feed-forward") model using all inputs flattened
FC-nowcasting	fully connected model based on observations optimized for up to $+6$ hours
EC	ECWMF-IFS closest grid point
PER	persistence model (current wind speed assumed for $+48$ hours)

Does our approach work for wind speed forecasts? **YES!**

Good results in the nowcasting and short-range: outperforms wind speed forecasts of raw NWP and persistence.

However, critical is ...

- good spatial/temporal selection, especially in complex terrain.
- sufficient training data.
- meaningful selection of NWP grid points regarding topography.
- proper processing (normalization, outlier/missing value treatment).