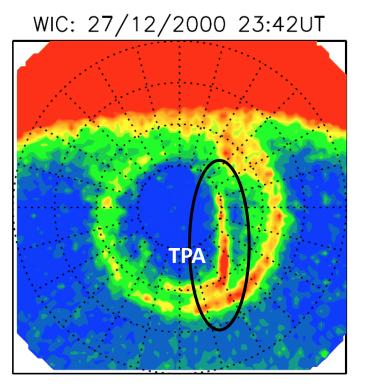


Transpolar arcs under a longduration radial IMF interval: A case study


Jong-Sun Park¹, Quan Qi Shi¹, Motoharu Nowada¹, Jih-Hong Shue², Khan-Hyuk Kim³, Dong-Hun Lee³, Qiu-Gang Zong⁴, Alexander W. Degeling¹, An Min Tian¹, Timo Pitkänen^{1,5}, Yongliang Zhang⁶, I. Jonathan Rae⁷, Shichen Bai¹, and Shutao Yao¹

¹Shandong Provincial Key Laboratory of Optical Astronomy and Solar-Terrestrial Environment, Institute of Space Sciences, Shandong University, Weihai, China. ²Institute of Space Science, National Central University, Taoyuan, Taiwan. ³School of Space Research, Kyung Hee University, Gyeonggi, South Korea. ⁴Institute of Space Physics and Applied Technology, Peking University, Beijing 100871, China. ⁵Department of Physics, Umeå University, Umeå, Sweden. ⁶The Johns Hopkins University Applied Physics Laboratory, Laurel, USA. ⁷Department of Space and Climate Physics, Mullard Space Science Laboratory, University College London, Dorking, UK.

Motivation (1/2)

Ex) Transpolar arc (Fear & Milan, 2012)

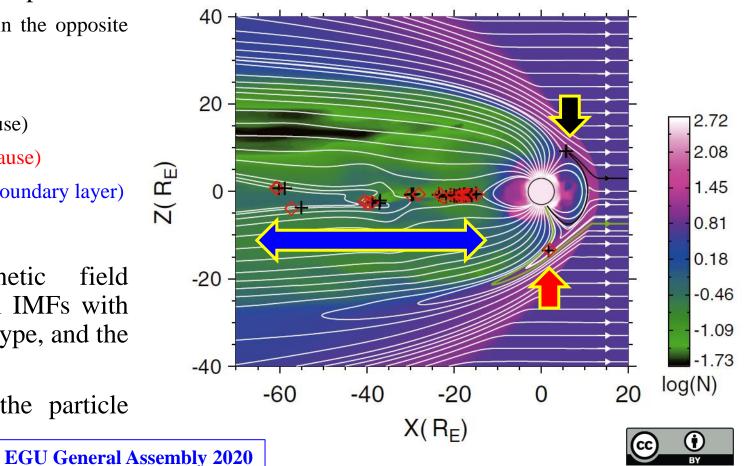
Transpolar arc (TPA): An optical auroral arc appearing at magnetic latitudes poleward of the main auroral oval

◆Interplanetary magnetic field (IMF) control of TPAs

- IMF B_z : Occurrence rate
 - Predominant occurrence during the northward IMFs \rightarrow Low geomagnetic activity
- IMF B_y : Magnetic local time (MLT) location
 - IMF $B_y > 0$: Duskside (dawnside) MLTs in the northern (southern) hemisphere
 - IMF $B_y < 0$: Dawnside (duskside) MLTs in the northern (southern) hemisphere
- IMF B_x : Hemispheric asymmetry
 - One hemisphere where lobe reconnection is favored

*Previous studies: TPAs in relation to the IMF B_x coupled to northward IMFs

- ➤ Controlling drivers that suppress TPAs → Difficult to determine the origin of the particles that produce the TPA
 - \checkmark Solar wind electrons with open field lines?
 - ✓ Particles in the plasma sheet (or its boundary layer) with closed field lines?

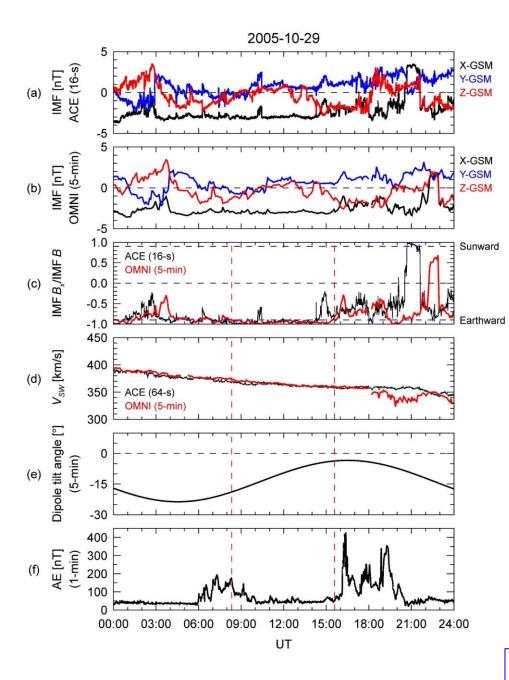


Motivation (2/2)

Solar wind-magnetosphere-ionosphere (S-M-I) system under radial IMF conditions

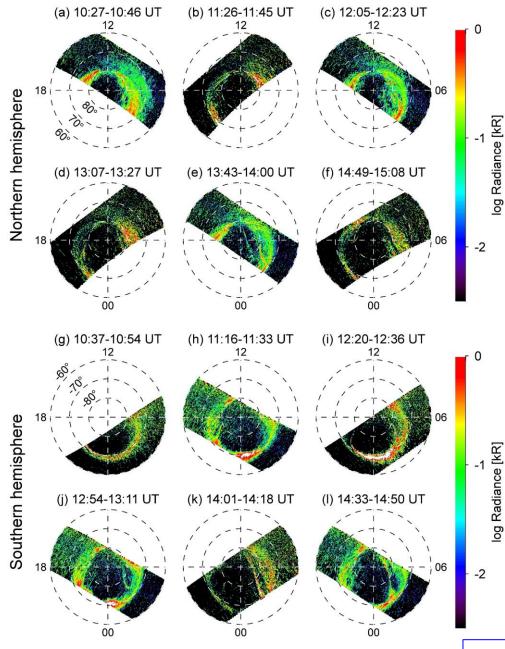
- IMF splitting/draping along the magnetopause
 - Different north-south IMF components in the opposite hemispheres along the magnetopause
- Magnetic reconnection regions
 - Sunward of the cusp (dayside magnetopause)
 - Tailward of the cusp (nightside magnetopause)
 - Magnetotail (plasma sheet/plasma sheet boundary layer)
- Combining the terrestrial magnetic field configuration connected to the radial IMFs with auroral images, precipitating particle type, and the plasma convection pattern
- Provide more direct evidence for the particle sources that produce the TPAs

Ex) For sunward IMF conditions (Tang et al., 2013)



Data Set

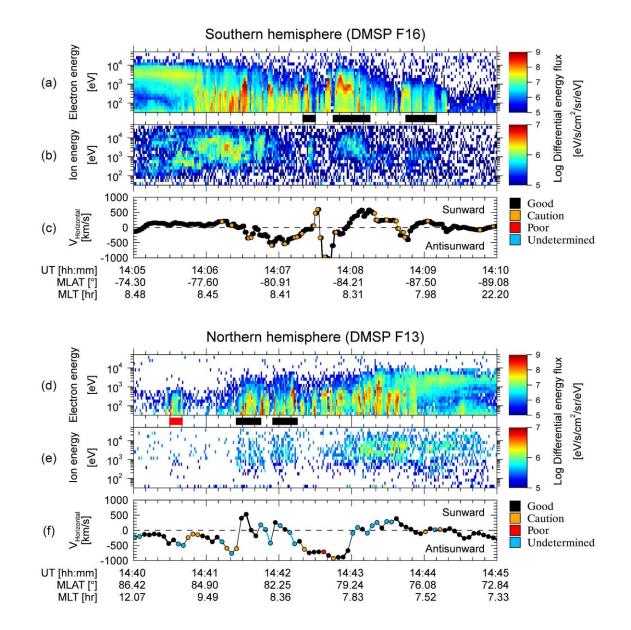
- IMF/Solar wind conditions
 - ACE: MFE (~16-s time resolution) & SWEPAM (~64-s time resolution)
 - OMNI: 5-min averaged data time-shifted into the nominal bow shock nose
- Auroral images
 - Cross-track scanned images of FUV emissions in Lyman-Birge-Hopfield (LBH) short band (~140-150 nm)
 - DMSP F16 (prenoon-premidnight local time sector): Special Sensor Ultraviolet Spectrographic Imagers (SSUSI)
 - TIMED (postnoon-postmidnight local time sector): Global Ultraviolet Imager (GUVI)
- Precipitating particle type
 - DMSP F13 & F16: Special Sensor for Precipitating Particles (SSJ/4 & SSJ/5)
- Ionospheric plasma convection pattern
 - DMSP F13 & F16: Special Sensor for Ions, Electrons, and Scintillation instruments (SSIES-2 & SSIES-3)



Interplanetary/Geomagnetic

♦On 29 October 2005,

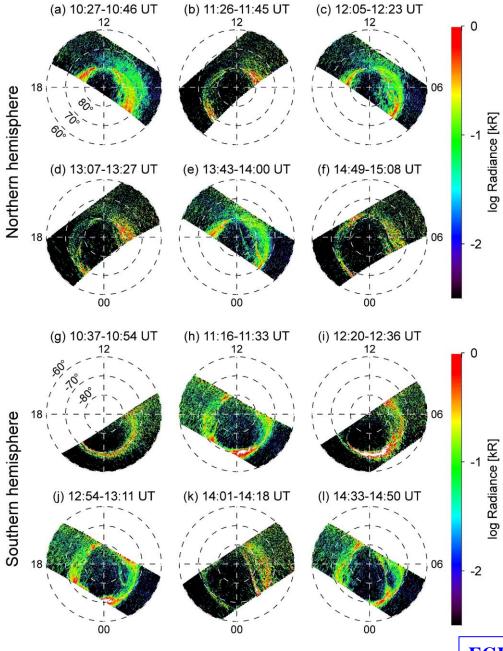
- IMF B_{χ} / IMF *B* for OMNI (third panel)
- ➤ Long-duration earthward IMF (IMF B_X /IMF $B \le -0.9$) interval: 08:22:30–15:37:30 UT (vertical dashed lines)
- ◆During this interval,
- Dipole axis: Become nearly orthogonal to the Sun-Earth line (dipole tilt angle: $-20^\circ \rightarrow -4^\circ$)
- Auroral electrojet (AE) index: Very low (AE < 100 nT) regardless of the southward IMF conditions embedded in the IMF orientation
 - ➤ Small magnitudes of southward IMF → Not act on the auroral electrojet activity



Auroral Image

- Figures (a)-(f): Northern hemisphere (NH)
 - Figure (a): Local emission peak at ~80° MLAT near the dawnside (~0500 MLT) auroral oval
 - Figures (c) & (e): Two clear TPA structures (with ~1 kR near the dawnside oval & ~0.1 kR near the magnetic pole)
 - ✓ Figures (b) & (d): No TPA near the magnetic pole? → Limit of the field of view for auroral imager and/or the difference between the two instruments?
- Figures (g)-(l): Southern hemisphere (SH)
 - Figures (g) & (h): Auroral oval devoid of the TPA
 - Figures (i)-(l): A clear TPA structure with radiance of ~1 kR on the dawnside of the polar cap
- TPAs with radiance of ~1 kR: In both hemispheres
 TPA with radiance of ~0.1 kR: In the NH

Precipitating Particles and Plasma Convection

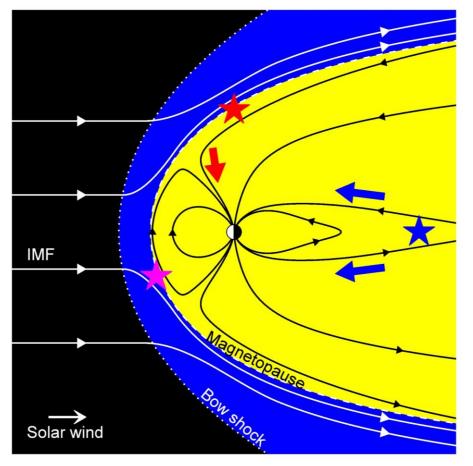


◆Figures (a)-(c): SH at 14:05–14:10 UT

- At ~14:07:20–14:07:30, ~14:07:45-14:08:15, & ~14:08:45-14:09:10 UT
 - Ion and electron (up to a few keV) precipitation
 - Sunward plasma convection
- ◆Figures (d)-(f): NH at 14:40–14:45 UT
- At ~14:41:25–14:41:45 & ~14:41:55–14:42:15 UT
 - A few keV ion and electron precipitation
 - Sunward plasma convection
- At ~14:40:30–14:40:40 UT
 - Electron-only precipitation (a few hundreds of eV)
 - Antisunward plasma convection

Discussion (1/2)

✤Under the long-duration earthward IMF interval at 08:22:30–15:37:30 UT on 29 October 2005,


- TPAs with radiance of ~1 kR
 - In the NH: At 12:05–12:23 UT (Figure 2c)
 - In the SH: At 12:20–12:36 UT (Figure 2i)
 - ✓ ~3–4 h delay from the onset time of the earthward IMF conditions: Response time of the TPA formation to IMF orientation (Fear & Milan, 2012)
- Independent of the IMF orientation prior to the onset of the radial IMF interval

Discussion (2/2)

- ✤ Under earthward IMF conditions,
- ◆TPAs (with radiance of ~1 kR) in both hemispheres
 ≻TPA formation: Not limited to northward IMF conditions
- Precipitating electrons and ions & sunward plasma convection
- Magnetotail plasma with closed field lines (star symbol and arrows in blue)
- \bullet TPA (with radiance of ~0.1 kR) in the NH
- ➢ Nightside magnetopause reconnection
- Electron-only precipitation & antisunward plasma convection
- Solar wind electrons with open field lines (star symbol and arrow in red)

Schematic illustration of the terrestrial magnetic field configuration under purely earthward IMFs

9

Conclusions

- TPAs occurring under a prolonged interval of radial IMF conditions
- > Categorized into two different types according to the precipitating particles and plasma convection
 - Electron and ion precipitation with sunward plasma convection (in the SH)
 - Electron-only precipitation with antisunward convection & electron and ion precipitation with sunward convection (in the NH)
- TPA formation
- \checkmark Not limited to northward IMF conditions
- \checkmark On both closed and open field lines
- TPAs: Both direct and indirect processes of the solar wind energy transfer to the high-latitude ionosphere

