

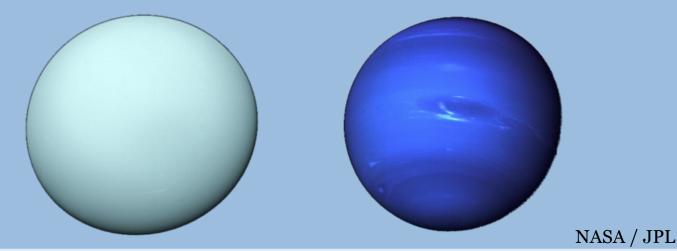
D UNIVERSITÄT BERN

Chemical and Isotopic Composition Measurements on Atmospheric Probes for Giant Planets

Peter Wurz⁽¹⁾, Audrey Vorburger⁽¹⁾, Hunter Waite⁽²⁾, and Olivier Mousis⁽³⁾

⁽¹⁾ Universität Bern, Physikalisches Institut, Space Science and Planetology, Bern, Switzerland
 ⁽²⁾ Southwest Research Institute, Space Science and Engineering Division, San Antonio, Texas, USA
 ⁽³⁾ Aix Marseille Université, CNRS, LAM, Marseille, France
 peter.wurz@space.unibe.ch

Uranus & Neptune


 $u^{{}^{\scriptscriptstyle \mathsf{b}}}$

UNIVERSITÄT BERN

Most frequently observed type of exoplanet, but **least understood class** of planets in our Solar System

No designated Uranus or Neptune mission yet \rightarrow almost all information from remote sensing

Remote sensing has its limitations, though → mass spectrometer for *in situ* measurements

Solar System Formation and Evolution

D UNIVERSITÄT BERN

Species of interest:

- major volatiles
 - (CH_4, CO, NH_3, N_2)
- noble gases
 - (He, Ne, Ar, Kr, Xe)
- isotopic ratios

 $(D/H, {}^{13}C/{}^{12}C, {}^{15}N/{}^{14}N, {}^{3}He/{}^{4}He, {}^{20}Ne/{}^{22}Ne, {}^{38}Ar/{}^{36}Ar, {}^{36}Ar/{}^{40}Ar$, as well as those of Kr and Xe)

See O.Mousis et al., '**Key Atmospheric Signatures for Identifying the Source Reservoirs of Volatiles in Uranus and Neptune**', Space Science Reviews (2020), accepted.

 \rightarrow imposes **high performance requirements** on mass spectrometers

Mass Spectrometer Requirements

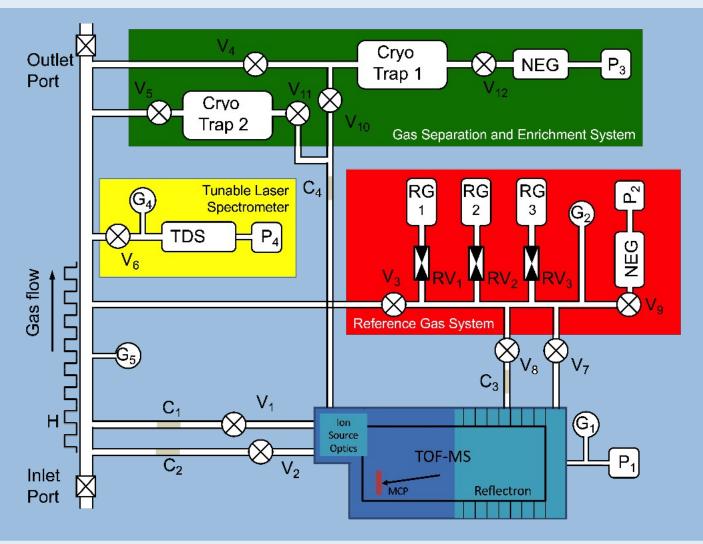
UNIVERSITÄT Bern

- Mass range
 - 1 300 u
- Sufficient mass resolution m / $\Delta m \approx 500$
- Sufficient sensitivity

10 decades dynamic range, plus isotopes Measurement time 10 – 90 minutes (descent time)

- Limit complexity Accommodation in the atmospheric probe

- Limit resources Power, volume, mass



Proposed Mass Spectrometer System

D UNIVERSITÄT BERN

U

h

Proposed Measurement Sequence

UNIVERSITÄT BERN

6 Phases:

- Phase O: 'empty space' until entry in planetary atmosphere
- Phase 1–2: High-speed descent through the upper atmosphere
- Phase 3–5: Low-speed descent through the atmosphere proper
- Phase 6: Final descent until loss of contact

Phase	Altitude [km]	Time span, from–to [sec]	Pressure [mbar]	Integration time [sec]	Vertical resolution [km]	Number of mass spectra
0	1500	-414.18 - 0	$1.00 \cdot 10^{-7}$	30		14
1	450	0-172	$1.00 \cdot 10^{-4}$	15	76.05	11
2	15	172-183	$4.00 \cdot 10^2$	12	38.02	1
3	14	183 - 235	$4.20 \cdot 10^2$	11	0.21	5
4	10	235 - 581	$5.00 \cdot 10^2$	10	0.12	35
5	-13	581-2101	$1.60 \cdot 10^{3}$	15	0.23	101
6	-140	2101 - 3684	$2.40 \cdot 10^4$	20	1.09	29

Measurement Accuracies

UNIVERSITÄT BERN

Phase 1	Accuracy	Isotopes	Accuracy	Phase 2	Accuracy	Isotopes	Accuracy		
	0	•			v	isotopes			
H_2 , low sensitivity	5.00%	HD/H_2	0.90%	H_2 , low sensitivity	5.00%				
He, low sensitivity	5.00%	$^{3}\mathrm{He}/^{4}\mathrm{He}$	1.70%	$\rm HD/H_2$	0.90%	0			
He/H_2	1.50%	10 10		He, low sensitivity	5.00%	$^{3}\mathrm{He}/^{4}\mathrm{He}$	1.70%		
CH_4 , low sensitivity	5.00%	$^{12}\mathrm{C}/^{13}\mathrm{C}$	1.90%	He/H_2	1.50%	10 10			
H_2S , low sensitivity	5.10%			CH_4 , low sensitivity	5.00%	$^{12}C/^{13}C$	1.90%		
C_2H_2 , low sensitivity	9.00%			NH_3 , low sensitivity	5.00%	$^{14}{ m N}/^{15}{ m N}$	12.60%		
C_2H_6 , low sensitivity	8.60%			H_2S , low sensitivity	5.10%				
Ne, low sensitivity	5.70%			C_2H_2 , low sensitivity	9.00%				
Ar, low sensitivity	5.00%			C_2H_6 , low sensitivity	8.60%				
Kr, low sensitivity	12.10%			Ne, low sensitivity	5.70%				
Xe, low sensitivity	41.80%			Ar, low sensitivity	5.00%				
				Kr, low sensitivity	12.10%				
				Xe, low sensitivity	41.80%			1. 1. 10. 1 . 1 . 1. 10. 10.	
Phase 3 / 4 / 5	Accuracy	Isotopes	Accuracy	Phase 6	Accuracy	Isotopes	Accuracy	Noble gases (3 times cryotrap)	Accuracy
CH ₄ , high sensitivity	5.00%	$^{12}C/^{13}C$	0.30%	CH ₄ , high sensitivity	5.00%	$^{12}C/^{13}C$	0.20%	Ar, enriched	
NH_3 , high sensitivity	5.00%	$^{14}N/^{15}N$	1.50%	NH_3 , high sensitivity	5.00%	$^{14}N/^{15}N$	1.04%	$^{36}{\rm Ar}/^{38}{\rm Ar}$	0.10%
H_2O at 2 bar, high sensitivity	6.50%	,		H_2O at 10 bar, high sensitivity	5.00%	$^{16}O/^{17}O$	7.40%	Kr, enriched	
H_2S , high sensitivity	5.00%			- , , , , , ,		$^{16}O/^{18}O$	3.10%	$^{78}\mathrm{Kr}/\mathrm{Kr_{tot}}$	1.06%
CO, high sensitivity	163.80%			H_2S , high sensitivity	5.00%			$^{80}\mathrm{Kr}/\mathrm{Kr_{tot}}$	1.13%
CO_2 , high sensitivity	457.70%			CO, high sensitivity	110.50%			$^{82}\mathrm{Kr}/\mathrm{Kr}_{\mathrm{tot}}$	0.46%
PH_3 at ~1 bar, high sensitivity	5.10%			CO_2 , high sensitivity	308.60%			83 Kr/Kr _{tot}	0.28%
AsH ₃ , high sensitivity	69.20%			PH ₃ , high sensitivity	5.00%			$^{84}\mathrm{Kr}/\mathrm{Kr}_{\mathrm{tot}}$	0.23%
GeH_4 , high sensitivity	445.00%			AsH_3 , high sensitivity	46.80%			$^{86}\mathrm{Kr}/\mathrm{Kr_{tot}}$	0.21%
C_2H_2 , high sensitivity	5.10%			GeH_4 , high sensitivity	300.00%			Xe, enriched	
C2H6, high sensitivity	5.10%			C_2H_2 , high sensitivity	5.00%			124 Xe/Xe _{tot}	6.18%
Ne, high sensitivity	5.00%			C_2H_6 , high sensitivity	5.00%			126 Xe/Xe _{tot}	8.74%
Ar, high sensitivity	5.00%			Ne, high sensitivity	5.00%	$^{20}{ m Ne}/^{21}{ m Ne}$	5.40%	128 Xe/Xe _{tot}	6.28%
Kr, high sensitivity	5.20%			, 0 ,		$^{21}{\rm Ne}/^{21}{\rm Ne}$	5.40%	129 Xe/Xe _{tot}	1.19%
Xe, high sensitivity	6.10%			Ar, high sensitivity	5.00%	/		130 Xe/Xe _{tot}	0.85%
				Kr, high sensitivity	5.10%			131 Xe/Xe _{tot}	0.87%
				Xe, high sensitivity	5.50%			132 Xe/Xe _{tot}	0.49%
				, <u> </u>				134 Xe/Xetot	0.60%
								136 Xe/Xe _{tot}	0.74%

For more information...

 $u^{\scriptscriptstyle b}$

UNIVERSITÄT BERN

see A. Vorburger, P. Wurz, and H. Waite, "**Chemical and Isotopic Composition Measurements on Atmospheric Probes**," Space Science Review (2020), accepted.