Subsurface water flow detection by time-lapse

GPR data

Hemin Yuan, Majken C. Looms, and Lars Nielsen

University of Copenhagen

06/05/2020

Outline

Introduction

□ Field experiment setup

GPR Data Analysis

Conclusions

Motivation

Using a water infiltration experiment to:

- Understand water penetration in near surface chalk
- Provide insights for fracture network mapping

Field site

- Relatively pure chalk (carbonate content >95%) (Leth et al., 2016)
- □ Interbed with chalk-marl unit
- Well developed fractures
- High porosity (46%) (Nielsen et al. 2019)
- Low matrix permeability (<10 mD) (Kristensen et al. 2017)

Experiment setup

Direct subtraction

Direct subtraction

Travel time comparison - Inline

Travel time comparison- Crossline

Correlation coefficient of Inline

Correlation coefficient of Crossline

Velocity variation of inlines

Velocity variation of crosslines

Water infiltrated zone

Water injection rate

Time interval	water injected (L)				In	iactad	watory	volumo
11~12	11		140			Jecleu	water	volume
12~13	30	me (L	120					
13~14	37	d water volu	100 80					
14~15	116		60				_	
15~16	132	njecte	40					
16~17	127	_	20					
17~18	116		·	11~12	12~13	13~14	14~15 Time i	15~16
18~19	110						THE I	

16~17

17~18

18~19

Water injection rate increases first and then decreases

Conclusions

□ Water infiltration causes obvious changes on inline E&F and crossline A&B&C

□ Travel time comparison, correlation coefficient and velocity variations also confirm the changes

□ Water primarily flows southeast through fractures

□ Water injection rate increases first and then decreases

