

## Table-top Cathodoluminescence Microscopy for Geology



### Toon Coenen

Business unit owner CL solutions coenen@delmic.com



Prof. Albert Polman **Dion Ursem** Hans Zeijlemaker

Thomas van der Heijden Sudiksh Srivastava Dorus elstgeest Wouter Roelofsen Andries Effting Sander den Hoedt

6<sup>th</sup> May 2020

### Table of contents



- Slides 3 5: Floor model SEM CL
- Slides 6 8: Table-top CL
- Slide 9: More CL
- **Slide 10 16:** Supplementary slides

### Cathodoluminescence system on floor model SEM





### Floor model SEM-CL data examples

Ŧ

![](_page_3_Figure_1.jpeg)

### Floor-model SEM CL

![](_page_4_Picture_1.jpeg)

![](_page_4_Picture_2.jpeg)

# **Question:** How do we make CL imaging more accesible and simpler?

+ High data quality

- High price
- + High spatial resolution
- + Modular and flexible
- + Correlation with other advanced SEM techniques
- Dedicated lab space and complex infrastructure needed
- Large footprint
- Expert user

### Table-top CL

![](_page_5_Picture_1.jpeg)

![](_page_5_Picture_2.jpeg)

Table-top scanning electron microscopes are compact, user friendly, and affordable. Currently, there are no proper CL solutions for such systems, however. Here, we integrate a CL system on a table-top SEM

### Cathodoluminescence

- + Low price
- + Simple to use
- + Fast
- + Small footprint
- + Little infrastructure required

- Lower spatial resolution
- Smaller range of acceleration voltages

### System approaches

![](_page_6_Picture_1.jpeg)

![](_page_6_Figure_2.jpeg)

#### Fiber based collection system

Collection fiber & GRIN lens

![](_page_6_Picture_5.jpeg)

![](_page_6_Picture_6.jpeg)

Spectrometer

- Simple collection system with fiber and GRIN lens
- Direct coupling into spectrometer
- Relatively low collection
  efficiency due to reduced NA

![](_page_6_Figure_11.jpeg)

![](_page_6_Figure_12.jpeg)

- Higher collection efficiency
- Design is finished
- Results coming soon!

### First results with fiber based CL system

![](_page_7_Picture_1.jpeg)

![](_page_7_Figure_2.jpeg)

- Hyperspectral CL maps for zircons with a full spectrum in every scanning pixel
- ➢ BSE and CL image show inverted contrast which is common in zircons
- Emission from Lanthanide ions is visible in the spectrum

#### More results are coming, stay tuned!

8

### More CL

![](_page_8_Picture_1.jpeg)

If you have any questions about cathodoluminescence imaging in general or about table-top cathodoluminescence feel free to contact me at <u>coenen@delmic.com</u> or visit our website www.delmic.com

#### More CL imaging at the EGU: Please visit this presentation if you are interested!

EGU2020-20478 Session BG4.4 "Correlative cathodoluminescence and EDS imaging of the benthic agglutinated foraminifer Liebusella goesi" Sangeetha Hari *et al.*, Wednesday, 06 May 2020, 08:30-10:15

![](_page_9_Picture_0.jpeg)

![](_page_9_Picture_1.jpeg)

# Supplementary slides

### Cathodoluminescence generation

Cathodoluminescence is the process whereby light (UV-VIS-IR) is generated when an electron beam hits a specimen. The emitted light carries a signature of the electronic structure of the material

**Excited State** 

**Ground State** 

![](_page_10_Figure_2.jpeg)

### Cathodoluminescence process in rocks

![](_page_11_Picture_1.jpeg)

For a crystalline material, electrons in that material can only occupy certain energy states. Typically, (almost) all electrons reside in the valence band

- Rocks are typically insulators with wide band gaps between 5 15 eV (DUV-EUV)
- In CL we measure in the 0.8 6 eV range
- Defect states play an important role

### Defect emission in rocks

![](_page_12_Figure_1.jpeg)

### CL versus other SEM-based techniques

![](_page_13_Picture_1.jpeg)

![](_page_13_Figure_2.jpeg)

CL can be used to extract various types of information and gives a unique contrast

### Sample preparation for SEM-CL

![](_page_14_Figure_1.jpeg)

### CL imaging modes

![](_page_15_Picture_1.jpeg)

![](_page_15_Figure_2.jpeg)

- Measure CL intensity
- Short dwell times (10 100 µs) → videorate imaging
- Coarse spectral filtering and RGB mapping

![](_page_15_Figure_6.jpeg)

- Measure CL spectrum
- Longer dwell times (10 1000 ms)
- Hyperspectral imaging with high spectral resolution