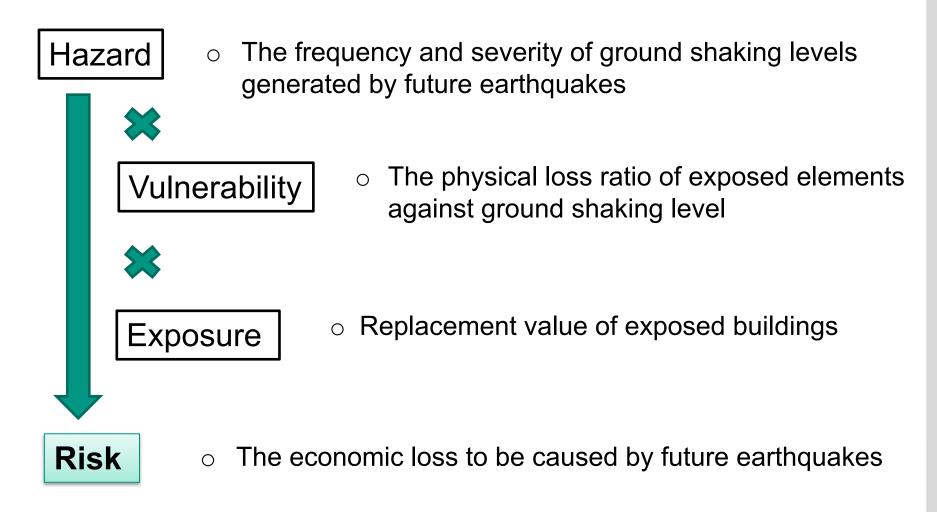


ID: D2060 |EGU2020-4526 Chat Thu, 07 May, 16:15–18:00

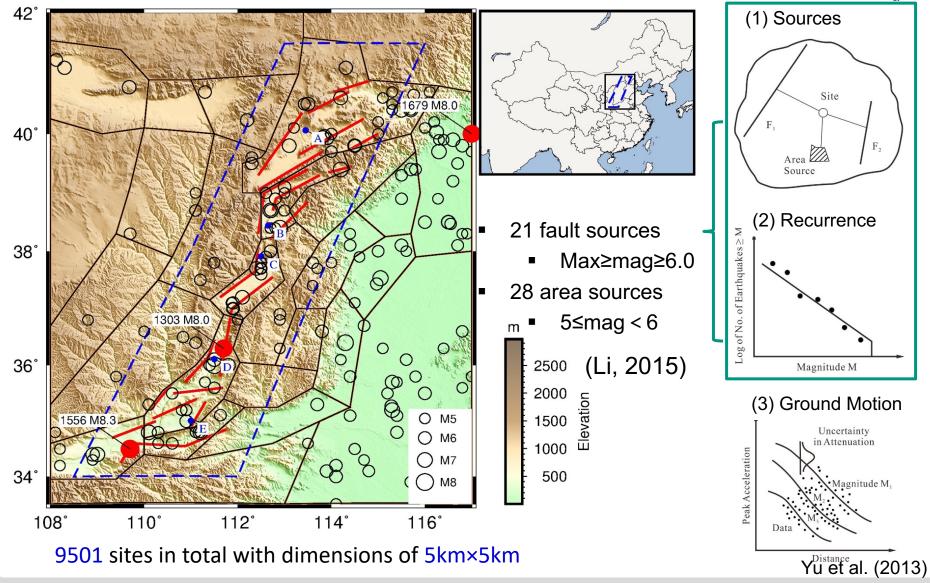
Comparison of Modeled Seismic Loss against Historical Damage Information

Danhua Xin, James Daniell and Friedemann Wenzel

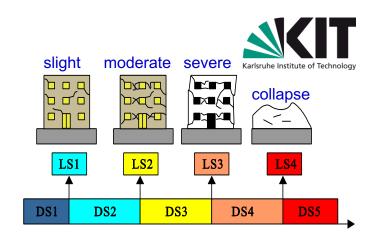

xindh@sustech.edu.cn; danhua.xin@kit.edu

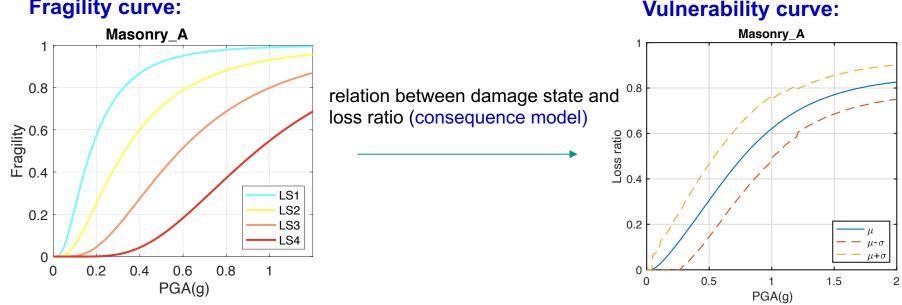
Geophysical Institute Faculty of Civil Engineering, Geo- and Environmental Sciences © Authors. All rights reserved

Seismic risk modelling:



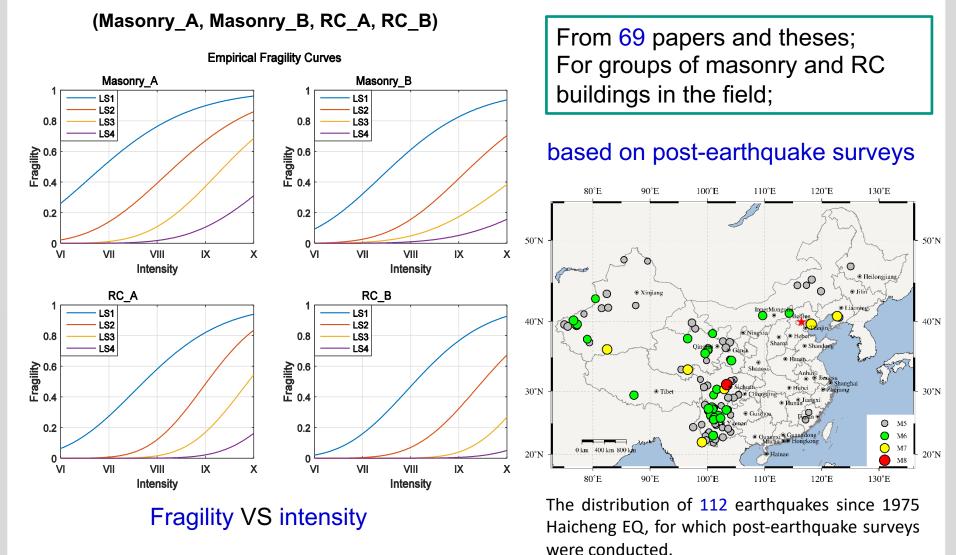
To what extent is the modelled loss consistent with historical damage information? How to measure it?


Test region: Shanxi Rift System



Fragility and Vulnerability:

- Building fragility is described by several damage • states - none, slight, moderate, severe and collapse.
- Fragility curve: describes the probability to ٠ exceed each damage limit state at specific ground motion level.
- Vulnerability curve: describes the relation • between ground motion level and loss ratio.

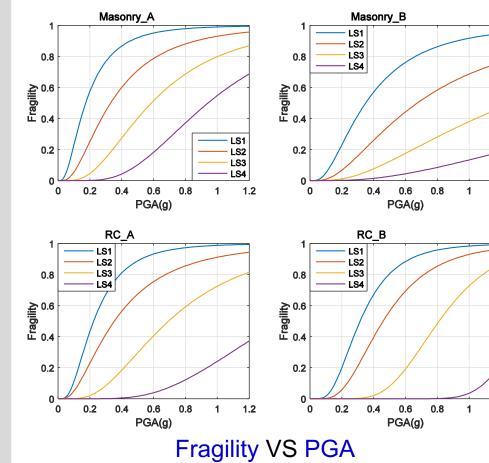


Fragility curve:

Geophysical Institute, Civil Engineering, Geo- and Environmental Sciences

Empirical fragility curves:

04.05.20 Danhua Xin


6

Geophysical Institute, Civil Engineering, Geo- and Environmental Sciences

Analytical fragility curves:

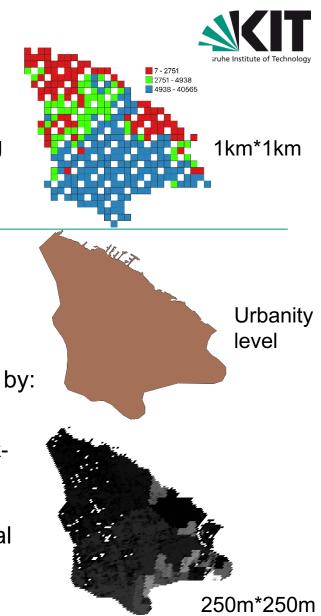
(Masonry_A, Masonry_B, RC_A, RC_B)

Analytical Fragility Curves

From 18 papers and thesis; For modelled masonry and RC structures.

based on non-linear analysis

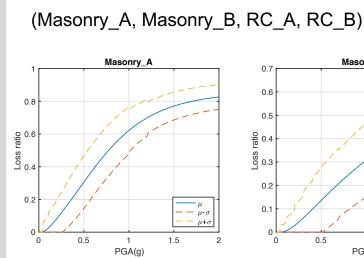
1.2

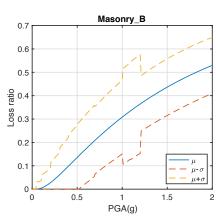

1.2

High resolution residential building stock modelling:

- What we need:
- in each grid (e.g. 1km*1km resolution), the building types used in loss modelling and their values
 - Masonry_A, Masonry_B, RC_A, RC_B

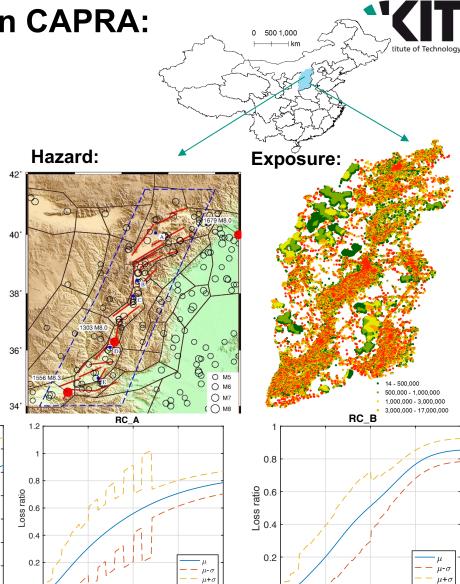
What we have:


- The 2010 national census (<u>urban, township, rural</u>):
 - Size of family
 - average floor area per capita
 - number of families living in buildings classified by:
 - Storey (1,2-3,4-6,7-9,≥10)
 - Occupancy (living, commercial, mixed)
 - Construction material (steel/RC, masonry, brickwood, others)
- The population density profile, developed by Global Human Settlement (GHS) project



Engineering loss modelling in CAPRA:

- Hazard: in terms of PGA
- Exposure: value of each building type
- Vulnerability: derived from fragility curve for each building type


0

0.5

1

PGA(g)

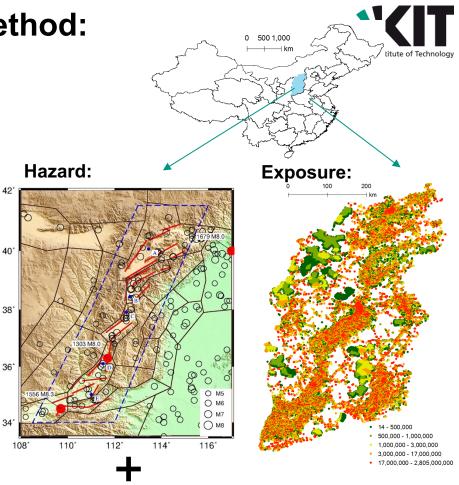
1.5

0.5

1

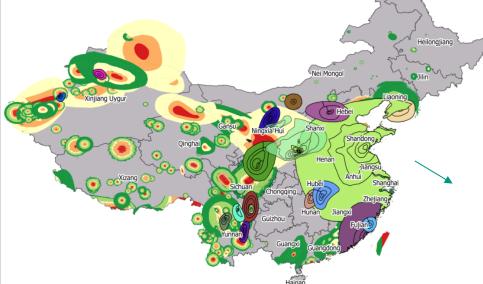
PGA(g)

1.5


2

0

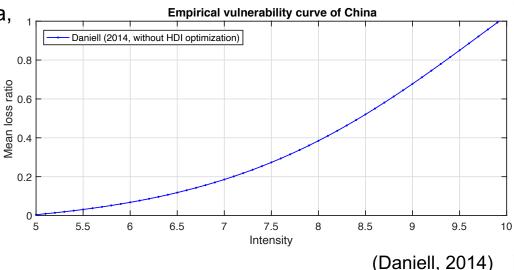
0


Empirical loss modelling method:

- Hazard: in terms of intensity
- Exposure: the overall value of all building types
- Vulnerability: one empirical loss function derived from <u>historical</u> <u>damage information</u>

intensity-PGA relation

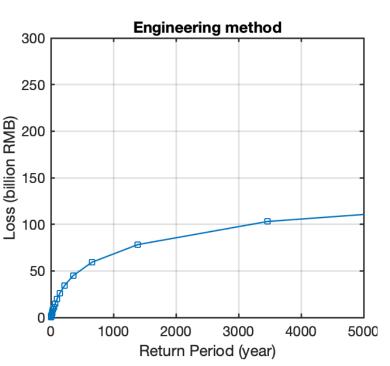
Empirical vulnerability curve derivation:


Digitalized intensity maps of **350+** historical earthquakes in mainland China, 85% occurred after 1970s

Karlsruhe Institute of Technology

For each historical event:

Return Period (year)

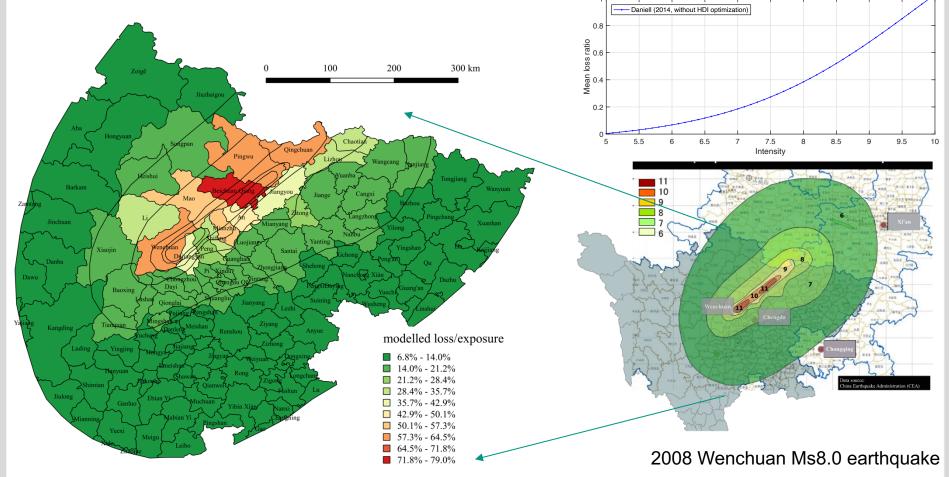

An example of Loss Exceedance Curve.

For individual scenario (deterministic):

Metrics used to measure loss compatibility:

compare modelled loss with surveyed loss

- For all scenarios (probabilistic):
 - AAL: Average Annual Loss •
 - LEC: Loss Exceedance Curve: ٠
 - the return period to exceed different losses for a given portfolio


Application of modelled results in Wenchuan EQ loss estimation:

Officially estimated lossbased on post-earthquake surveys: around 98.3-435.4 billion RMB, with the median around 212.32-247.25 billion RMB (in 2008 current price);

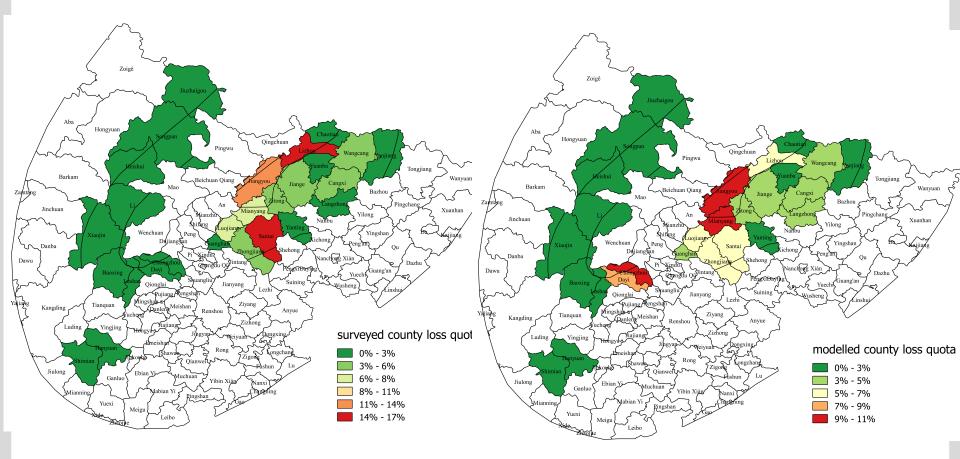
The loss estimated in this study is around 144-288 billion RMB

Empirical vulnerability curve of China

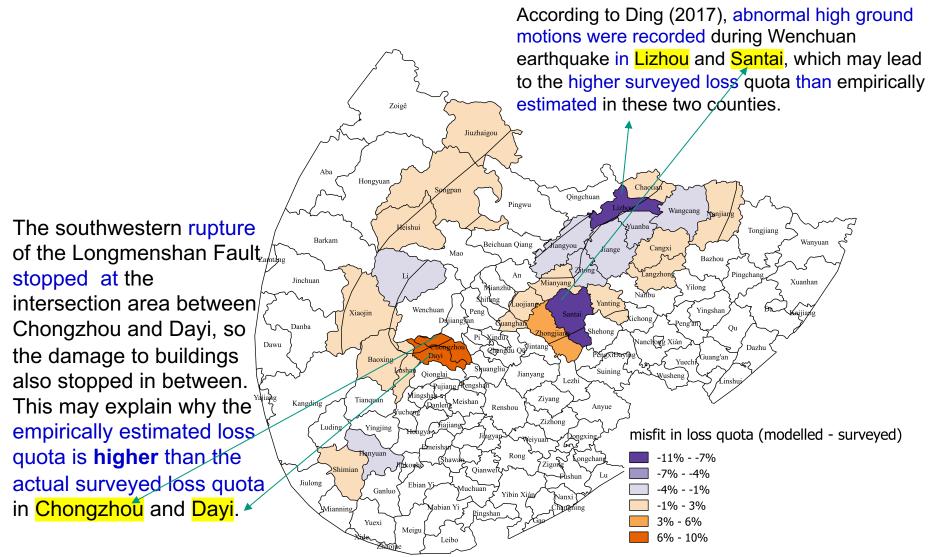
Loss estimated based on damage reports:

County-level based damage reports of Wenchuan Ms8.0 earthquake in Sichuan, C

adm2_name	adm3_name	number of damaged township/urban buildings (unit: m²)			number of damaged rural buildings (unit: room, 1 room=15m²)			loss estimated from the damage
		D4/D3	D2	D1	D4/D3	D2	D1	reports (RMB)
Abazhou	Lixian	785700	77700	0	31306	16038	0	2.41E+09
Mianyang	Jiangyou	1470904	7018450	4032820	434096	354136	49212	2.17E+10
Guangyuan	Lizhou	6482800	4659400	0	422800	253500	0	2.80E+10
Guangyuan	Chaotian	485400	121300	0	27816	19555	5478	1.77E+09
Guangyuan	Wangcang	1577200	223000	0	84949	101918	170686	5.99E+09
Mianyang	Zitong	498000	1092000	827100	251687	235582	21525	7.89E+09
Mianyang	Youxian	903448	3018480	491760	161380	183697	95836	9.63E+09
Deyang	Jingyang	616300	396300	10491000	221100	147300	0	8.59E+09
Abazhou	Xiaojin	271000	61700	353100	40854	47377	0	1.68E+09
Mianyang	Fucheng	230194	1363295	2044943	28298	69664	29865	3.68E+09
Deyang	Luojiang	529400	260753	1171247	67100	134800	0	3.73E+09
Abazhou	Heishui	166300	10900	367900	27384	41327	0	1.16E+09
Chengdu	Chongzhou	13112	176749	373693	76040	151970	140000	2.72E+09
Guangyuan	Jiange	1491500	1012900	0	143100	341800	0	9.12E+09
Mianyang	Santai	1177820	5642140	5060860	427933	842074	561383	2.39E+10
Nanchong	Langzhong	525000	1120000	2630000	32554	0	0	3.68E+09
Mianyang	Yanting	320178	787212	707516	36448	62516	72111	2.95E+09
Abazhou	Songpan	84800	243300	360000	11808	64894	0	1.23E+09
Guangyuan	Cangxi	331600	1372400	0	145772	251692	176496	6.58E+09
Ya'an	Lushan	1680	12480	1062600	2300	44700	0	6.51E+08
Deyang	Zhongjiang	55160	247100	4012750	83498	202552	762188	5.23E+09
Guangyuan	Zhaohua	170600	235600	279200	48483	182925	30595	2.82E+09
Chengdu	Dayi	325000	347000	799000	5160	12445	27350	1.57E+09
Ya'an	Baoxing	4286	32467	173462	5300	36200	0	4.37E+08
Bazhong	Nanjiang	191300	106500	0	35300	46300	0	1.39E+09
Deyang	Guanghan	22400	126100	541547	65400	404900	0	4.26E+09
Ya'an	Hanyuan	115555	70935	180830	192100	76600	0	3.56E+09
Ya'an	Shimian	152600	167300	0	7500	22500	0	8.22E+08
Abazhou	Jiuzhaigou	167700	263100	543700	11291	55357	0	1.41E+09
In total:		19166937	30266561	36505028	3128757	4404319	2142725	1.69E+11


Source: Sichuan Earthquake Administration (2018)

Compare modelled loss ratio with surveyed loss:


Survey loss based on damage reports:

Modelled loss using empirical method:

Difference in loss proportion (modelled - surveyed):

Comparison of modelled probabilistic loss:

Empirical Average Annual Loss (AAL): **2.57 billion RMB**, **1.61‰** of exposed value. Engineering Average Annual Loss (AAL): **1.02 billion RMB**, **0.64‰** of exposed value.

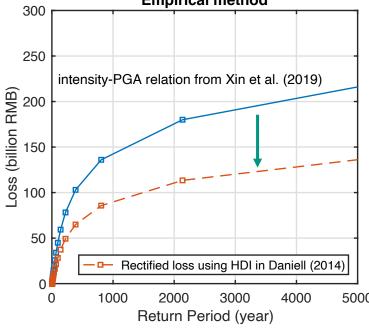
Empirical method 300 250 intensity-PGA relation from Xin et al. (2019) 200 150 100 50 Rectified loss using HDI in Daniell (2014) 0 1000 4000 0 2000 3000 5000 Return Period (year)

Empirical loss \approx

Engineering method 300 250 -oss (billion RMB) 200 150 100 50 0 1000 2000 0 3000 4000 5000 Return Period (year)

In engineering loss modelling:

engineering loss)


No soil amplification effect is

included (will increase the

In empirical loss modelling:

No building vulnerability change with time is considered (will decrease the empirical loss)

2 * Engineering loss

To what extent is the modelled loss compatible with historical damage information? How to measure it?

- Method: calculate loss using two methods
- Result: Engineering loss is essentially compatible with empirical (historical) loss

Thanks for your attention!

Two key concepts in exposure:

Difference between Gross Capital Stock and Net Capital Stock:

- Gross capital stock == replacement expense
- Net capital stock == repairment expense (the depreciation of capital stock over time is considered)

Difference between GDP and Capital Stock:

- In the 2013 Global Assessment Report on Disaster Risk Reduction, capital stock (a 'stock' indicator) has been used to replace GDP (a 'flow' indicator) to represent economic exposure to natural disasters;
- Because a natural disaster could cause asset damage greater than the annual GDP, such as the 2010 Haiti earthquake (Bilham, 2010)
- Instead, GDP is regarded as the indicator of indirect loss due to the interruption of econmicial activities.

Assumptions in exposure model construction :

- The urbanity (city/town/village) level is judged from population per grid (1 km²) : village : ≤1300 town : 1300 ~ 6577 city : ≥6578
- Statistical ratio between agriculture, industry, service: 41.6:19.9:38.5 (sum=1)
- Updated agriculture, industry, service: ag = 0.8*ag; ind = 1.3*ind; sevice = 1.1*service
- sum(agriculture, industry, service) stock = gross capital stock building stock
- For detailed building types with different material and height: BRIWOMC1, BRIWOMC23, STLRCMC1, STLRCMC23, STLRCMC46, STLRCMC79, STLRCMC10, MIXEDMC1, MIXEDMC23, MIXEDMC46, MIXEDMC79, MIXEDMC10, OTHERMC1, OTHERMC23, OTHERMC46, OTHERMC79, OTHERMC10
- Average net capital stock per capita: 110480
- Gross capital stock/net capital stock: 1.64

• . . .

22

Loss validation using historical loss database:

Daniell (2014, thesis)

calculated by CAPRA-GIS:

predicted based on historical database:

- input datasets:
 - intensity map (historical observation)
 - current population
 - current capital stock

process:

- intensity loss relationship was established based on historical loss data
- the change of vulnerability in capital stock was indicated by HDI index
- Given an intensity map, population, capital stock info and current HDI index of research area, the potential loss can be predicted instantly
 - input datasets:
 - PGA, SA (instrumental records)
 - current population
 - current building structure information
 - process:
 - different building vulnerabilities should be developed
 - detailed building assets should be given

PGA-intensity transformation can be based on our relationship developed in fragility work